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Abstract 

Knowledge of field scale crop yields allows us to understand small scale changes to 

agricultural intensification and how different management practices and environmental 

conditions affect production. Calculating yields with remote sensing offers the opportunity to 

analyse yields without the requirement for farmers to provide data. Here we use the Scalable 

Crop Yield Mapper (SCYM) to simulate 2017 silage maize yield at pixel and field scale in 

Brandenburg, Germany. We incorporated crop management, climate and soil variables to 

produce daily leaf area index and yield outputs from crop model simulations using the 

MONICA crop model and combined these with seasonal weather variables to train daily 

multiple regression models. We then simulated yields within known silage maize fields within 

the Google Earth Engine platform by estimating the leaf area index and extracting the capture 

date of each pixel image within a Sentinel-2 growing season composite and combining this 

with the associated multiple regression equation for the day the image was captured. We 

used district scale data from the Office of Statistics to validate results and found that SCYM 

explained 8% of the variability of silage maize yields in Brandenburg in 2017 with a weak non-

significant positive correlation between the two datasets (r = 0.28, p = 0.32). We found that 

SCYM overestimated yield in 12 out of 14 districts by a factor of up to 1.29. We conclude that 

whilst the basic elements required for SCYM estimated yields are available for Brandenburg 

and that estimating yields is possible, the accuracy of the validation data available for the 

region is questionable and is a hindrance to assessing SCYM’s performance in the region. 

Further research utilising highly accurate field scale validation data is recommended. 

Nevertheless, the results have helped us to understand the feasibility of estimating yield with 

SCYM in Brandenburg and offer a good grounding for further research on the subject.
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1. Introduction 

The World’s population is predicted to reach 10 billion by 2050 leading to a global 

demand for food crops 50% higher than in 2013. Simultaneously, the bioenergy market 

continues to grow globally with demand expected to be 50% higher than 2013 by 2020. These 

two factors have resulted in an escalation of global demand for agriculture crops leading to 

increased competition for land, which is in turn driving deforestation and increasing 

agricultural contributions to greenhouse gasses (Food and Agricultural Organisation of the 

United Nations (FAO), 2017). If we are to continue to meet this demand in the future without 

expanding agricultural land, advancements in agricultural technology, management practices 

and distribution are required. 

Despite this need, our knowledge on the distribution and temporal changes to 

agricultural intensity are limited (Kuemmerle et al., 2013). Agricultural intensification is 

defined as increasing production whilst maintaining inputs, or by maintaining production 

whilst decreasing inputs (FAO n.d. a). The required increases in agricultural intensification 

comes with a caveat in that intensification has both advantages and disadvantages, 

particularly with regard to environmental concerns (FAO, 2017). These include an increase in 

greenhouse gas emissions, eutrophication caused by excessive nitrates and phosphates in 

fertiliser, loss of biodiversity through the use of chemical substances used to remove 

unwanted weeds and pests, and alterations to the water cycle through irrigation (Foley, 2005; 

Tilman et al., 2001). The gains from intensification can also be short-lived, with increased soil 

erosion and salinisation becoming an issue in some regions (Foley, 2005). Recently however, 

research has begun to focus on sustainable or ecological intensification, which intends to 

decrease the yield gap by employing management practices which improve yield without 

subsequent environmental degradation. These techniques include increasing soil organic 

matter and maintaining biodiversity by managing landscapes to ensure sufficient habitats are 

available (Bommarco et al., 2013; Foley, 2005). However it remains to be seen whether these 

practices will be universally adopted. As such, any increase in agricultural production, 

following the adoption of new or improved management practices, must be weighed against 

any resulting increases in environmental degradation. 
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The negative consequences of agricultural intensification can be mitigated with the 

use of precision agriculture. In precision agriculture, farmers are able to target areas of a field 

where a certain management practice has been identified as beneficial. In essence, a field can 

be divided into an unlimited number of smaller plots, each one with its own specific 

management inputs dependent on its location, geomorphology, soil type and nutrient 

availability. Targeting smaller areas in this way leads not only to increased production but also 

to an increase in soil quality, a reduction in input costs and waste, and it is less damaging to 

the environment (Mulla, 2012). It is expected that in the near future precision agriculture will 

be commonplace, with autonomous instruments able to manage and maintain crops on an 

individual plant basis (Mulla, 2012). 

If precision agriculture is to be used efficiently, it is paramount that the investment is 

directed at the areas where the potential increase will be most effective. It is therefore 

essential to establish where production gaps exist. Crop yield is defined as crop harvested 

(mass) divided by cropland (area) (Azzari et al., 2017; Carletto et al., 2015). Yield can be 

divided into three categories: 1) theoretical yield is the yield that could be achieved for a 

particular crop cultivar given perfect growing conditions; 2) attainable yield is the yield that 

could be achieved for a particular crop cultivar given the available solar radiation and 

temperature at the specific location; 3) actual yield is the measured yield produced. The 

difference between the latter two is the attainable yield gap, which is dependent on the 

availability of water and nutrients as well as losses due to weed and pest control (Bommarco 

et al., 2013; Lobell et al., 2009). Knowledge of yield gaps is one of the essential system metrics 

used for mapping agricultural intensity (Kuemmerle et al., 2013). Moreover, it has been 

suggested that by reaching 100% of attainable yield globally, production increases of between 

40 – 70% can be achieved (Mueller et al., 2012). However, despite increases in agricultural 

investments, yield growth has slowed in recent years and in many places has stagnated (FAO, 

2017; Ray et al., 2012). 

Knowledge of yields provides lots of uses across spatial scales including how 

management, climate and soil factors affect crop growth (Lobell etal., 2015). For 

administrative purposes, yields are rarely reported at field level and are usually reported for 

administrative units, often covering a large geographical area and encompassing numerous 

fields (Lobell, 2013; Lobell et al., 2009). Whilst researching yields on a regional scale can be 

advantageous, blanket adoption of management practices can result in a waste of resources, 
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as areas which have a low potential of increasing yield are also targeted. Thus, it is essential 

to establish exactly where these resources are required at the finest possible scale. 

Knowledge of yields at field scale allows a detailed understanding of how crop growth 

responds directly to different management practices and environmental factors and can help 

with insurance or land rental decisions (Lobell, 2013; Lobell et al., 2015). Thus identifying yield 

gaps at field level or smaller is essential if we are to efficiently increase production without 

the expansion of agricultural land, wasted resources or further environmental degradation. 

However there are few options for measuring yields at a fine scale, over a large geographical 

area and over time. 

It has long been established that estimating yields is possible through remote sensing. 

However, most research has aimed at calculating yield at regional scale (Becker-Reshef et al., 

2010; Lobell et al., 2015; Mulla, 2012; Rembold et al., 2013) although remote sensing can 

provide data on crops efficiently and at a variety of temporal and spatial scales (Atzberger, 

2013; Rembold et al., 2013). Different approaches to calculating yield at regional scale using 

remote sensing techniques, include using linear regression models to relate crop yield to 

vegetation indices (VI) (See section 2.1.5.2.2 for an explanation of VI) and adding 

meteorological data into multiple regressions (Lobell, 2013; Rembold et al., 2013; Shanahan 

et al., 2001). Other approaches include integrating crop models (Clevers, 1997; Lobell et al., 

2003; Moulin et al., 1998; Sehgal et al., 2005; Sibley et al., 2014) but these can be resource 

intensive and site and date specific. Methods have also been established that capture over 

50% of the field scale yield variation using remote sensing techniques (Clevers, 1997; Lobell 

et al., 2005; Moulin et al., 1998). Estimating field scale yields remains difficult due to cloud 

cover, atmospheric interference and geolocation issues (Mulla, 2012). In addition it remains 

uncommon as a result of the relatively high cost, lack of availability of appropriately scaled 

satellite data, a lack of validation data and a lack of requirement by administrations (Lobell et 

al., 2015). This requirement is now changing as administrations look to improve production 

and due to the reduction in costs of obtaining more detailed data. The costs have declined as 

a result of the open availability of satellite data from a number of sources (Lobell et al., 2015). 

This has led to further research taking advantage of these changes, in order to establish 

efficient and accurate methods for estimating yield at field level using remote sensing data 

(Azzari et al., 2017; Jin et al., 2017; Jin et al., 2019; Lobell & Azzari, 2017; Lobell et al., 2015). 
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The Scalable Crop Yield Mapper (SCYM) is one such method. It was developed by 

Lobell et al. (2015). The aim was to produce a method for estimating yield from remotely 

sensed images which can be adapted to any location, at any scale and with little 

computational resources. Lobell and colleagues updated the crop model and empirical model 

technique to enable it to be used on multiple dates and included season specific weather data 

within the regression model. Thus SCYM is neither spatially nor temporarily specific. The 

method can be implemented in Google Earth Engine (GEE) online meaning that no software 

is required, significantly reducing cost and resource requirements. The speed and efficiency 

with which yields can be estimated provides the opportunity for detailed analysis of 

management practices at site specific locations (Lobell et al., 2015). SCYM has been tested in 

a number of locations, including the Midwestern USA, India and Zambia and has proven to 

function across varying agricultural landscapes (Azzari et al., 2017; Burke & Lobell, 2017; Jin 

et al., 2017, 2019; Lobell & Azzari, 2017; Lobell et al., 2015). Furthermore, SCYM has been 

found to produce results as accurate as field based measures and as such has the potential to 

eliminate the need for validation data (Burke & Lobell, 2017). Thus SCYM is a good option for 

estimating yields at a large scale and over large geographical areas. 

Utilising GEE to implement SCYM provides a number of advantages. GEE was 

developed by Gorelick et al. (2017) and provides a cloud based platform for acquiring, 

analysing and displaying satellite imagery. The computational power required to process large 

geospatial data is distributed across a network of computers, thus reducing the time required 

to process large datasets locally. GEE includes an extensive catalogue of geospatial datasets 

including the Landsat archive and Sentinel images as well as aerial derived images and 

environmental datasets. As the use of remote sensing continues to expand, it is anticipated 

that higher resolution images from alternative providers will become publicly available, 

increasing the potential of geospatial analysis within GEE and further improving yield 

estimation. The user interface utilises the Javascript programming language to access, analyse 

and display images. GEE is free to access and whilst prior knowledge of remote sensing is 

advantageous, it is not essential. GEE has been utilised in research across a number of 

disciplines including calculating growing stock volume in forest management (Sánchez-ruiz, et 

al., 2019), mapping wetlands (Wu et al., 2019), detecting vegetation changes (Xie, Z et al., 

2019) and mapping irrigation (Xie, Y et al., 2019). As SCYM is designed using freely available 
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data and software, it is feasible to imagine farmers carrying out their own yield estimates 

using SCYM and adapting their management practices appropriately. 

Whilst SCYM has been tested in various locations, it has not to our knowledge been 

tested in Europe. The adaptation of SCYM for use in Europe offers great potential particularly 

across the 28 member states of the European Union (EU-28). The EU has in place a common 

agricultural policy (CAP) through which member states report their annual yields of different 

crops. This information is used by the EU in relation to trade and development. The EU also 

runs a crop yield forecasting system (The MARS Crop Yield Forecasting System) which utilises 

satellite observations to predict future crop risks. Historical data that SCYM requires for crop 

modelling simulations and multiple regression training is likely to be available for all EU 

countries. In addition, crop masks can be easily created for each year and location thanks to 

the Integrated Administration and Control System (IACS), which provides georeferenced data 

on the crops grown in agricultural fields across the EU (EC, n.d., a). However the reporting 

procedure varies between regions (Amt für Statistik Berlin-Brandenburg (Office of Statistics 

Berlin Brandenburg) (AfSBB), 2017). 

In 2016 almost 40% of the total land in the EU was classed as agricultural land, 

incorporating 173 m ha (Eurostat, 2018). With a total crop agricultural output of €205.6 billion 

in 2018, it is an important agricultural region for the World’s food supply (European 

Commission (EC), 2019a). Over 60% of farms are less than 5 ha and 96% of farms are classed 

as family farms. These are expected to play an important role in providing additional income 

and food to rural areas in the future (Eurostat, 2018). The number of farms greater than 100 

ha and with an output over €500,000 is increasing (EC, 2019a). Despite this the area of 

agricultural land remains stable, indicating a switch to a greater proportion of large scale 

farming operations in recent years (Eurostat, 2018). These changes are likely to bring in new 

investments and management practices. With this in mind it is important to understand how 

these changes may affect the distribution of yield at field level in order to manage resources 

and restrict negative environmental consequences. 

Germany is the fourth largest state in the EU and contributes around 12% to the total 

agricultural output of the EU (EC, 2019a) with agricultural land covering about 16.7 m ha in 

2016 (Eurostat, 2018). It is one of four EU states where growth in the number of farms is 

restricted to those farms greater than 100 ha (Eurostat, 2018). Between 2010 and 2016 the 

number of farms greater than 100 ha increased from 11.2% to 13.3% (EC, 2019b). Germany 
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has a history of bioenergy production and experienced a biogas boom after 2000 and 

especially following the incentivisation of biogas crops in 2003 (Grundmann et al., 2012; 

Pfeiffer & Thra, 2018). Between 2000 and 2010 the cultivated area for biogas substrate 

production, including silage maize, increased from 20,000 to 650,000 hectares (Pfeiffer & 

Thra, 2018). 

Brandenburg is the 5th largest state in Germany with an area of approximately 2.95m 

ha (Map 1) a large proportion of which is used for arable farming (See Table 1 for a selection 

of facts and figures on arable farming in Brandenburg referred to in this paragraph). The 

number of large farms in Brandenburg is considerably higher than the German average and 

has been continually rising in recent years (EC, n.d., b; Landesvermessung und 

Geobasisinformation Brandenburg (Land Surveying and Geo Information Brandenburg) (LGB), 

2017) coinciding with an overall reduction in the total number of farms (LGB, 2017). Around 

75% of farms are owned by corporate bodies and partnerships (Grundmann et al., 2012; 

Gutzler et al., 2015). The difference between the mean size of a silage maize field and the 

median size of a silage maize field within the state (Table 1) suggests that a small number of 

very large maize fields are present within the state (LGB, 2017). The planting of silage maize 

crops has also been steadily increasing and silage maize recently overtook Rye to become the 

most planted crop by area in 2016. A total of 154715 ha was used for silage-maize in 2017 

corresponding to 12% of all arable farming land in Brandenburg (LGB, 2017). Thus it is an 

extremely important crop for the state (LGB, 2017). Furthermore, under the Rural 

Development Programme for Berlin and Brandenburg (EC, n.d., b), farmers in Brandenburg 

are being incentivised to adopt climate and environmentally friendly management practices 

in order to improve biodiversity, water and soil management. 

Despite these changes to the agricultural landscape in Brandenburg, very little data 

exists on agricultural intensity. For example, the use of fertilisers and pesticides is not officially 

recorded and data on yields is limited. Brandenburg is a large state with rapidly intensifying 

agriculture and thus is a good match for SCYM’s ability to estimate yields at a large scale and 

over large geographical areas. Furthermore, to the best of our knowledge, the existing 

research on SCYM has been provided by the research group involved in the development of 

the method. It has not as yet been tested by researchers outside of this group. If SCYM is to 

be accepted amongst the research community as a durable, efficient and accurate method 

for estimating crop yields at any location across the World, it is necessary for other 
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researchers to test SCYM and report on its adaptability. As such, the aim of this research is to 

provide a case study on the ability of SCYM to simulate silage maize yields in the state of 

Brandenburg, Germany in 2017. 

 

     Map 1: Location of the state of Brandenburg within Germany 
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Table 1: A selection of facts and figures on arable farming in Brandenburg. 

Fact Statistic Source 

Land used for arable farming 40% (1.3m ha in 2017) LGB, 2017 
No. Farms in 2017 5611 LGB, 2017 
No. Farms in 2016 5641 LGB, 2017 
No. Farms in 2015 5647 LGB, 2017 
Farms larger than 100 ha in 2017 40% EC, n.d., b; LGB, 2017 
Farms larger than 1000 ha in 2017 6% LGB, 2017 
Mean size of a silage maize field in 2017 13.47 ha LGB, 2017 
Median size of a silage maize field in 2017 8.39 ha LGB, 2017 
No. silage maize fields in 2017 11487 LGB, 2017 
Silage maize fields < 10 ha in 2017 56% LGB, 2017 
Silage maize fields < 50 ha in 2017 97% LGB, 2017 
Silage maize field > 100 ha in 2017 0.2%  (311 fields) LGB, 2017 

 

2. Methods 
2.1 SCYM implementation 

2.1.1 SCYM workflow 

The research was conducted following the SCYM method developed by Lobell et al. 

(2015). The method is divided into four distinct steps (Table 2) and was initially developed for 

maize and soybean yields in the Midwestern USA, using satellite images from Landsat 5 and 

7 (Lobell & Azzari, 2017; Lobell et al., 2015). It has also been tested on wheat in India and 

maize in Zambia using images obtained from a variety of Landsat sensors as well as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Azzari et al., 2017). Figure 1 

provides an overview of the SCYM workflow we adopted for this study which is described in 

detail in the following sub-sections. 

 

Table 2: The four step process of SCYM (Source: Lobell et al. (2015)) 

Step Name Description Requirements 

1 Crop model 
simulations 

Simulate daily crop growth and yields for 
multiple sites, years, and management (sow 
dates, cultivars, plant density, etc.) 

Well-tested crop model (e.g., APSIM, 
Hybrid-Maize, DSSAT) 
Daily weather and soil data for some sites 

2 Pseudo-
observations 

Translate daily crop model output to daily 
observations for relevant sensor(s) 

Literature-based equation to relate crop 
model outputs and remotely sensed 
variables (e.g., LAI vs. WDVI, LAI vs. c-band 
backscatter, water supply:demand ratio vs. 
evaporative stress index) 

3 Regression 
calibration 

Train regression to predict yields from 
pseudo-observations (e.g. VI) and weather 

N/A 

4 Yield estimation Per-pixel yield predictions by applying 
regression to satellite observations and 
gridded weather 

Satellite images, gridded monthly weather 
data, and crop type maps 
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 Figure 1: SCYM workflow. pink = the major steps within the process., purple = steps carried out in GEE, grey = external 

 inputs, yellow  = outputs 

 

 

2.1.2 Step 1: Crop model simulations 

SCYM requires a number of crop model simulations from a well-tested crop model 

which can produce daily outputs from a variety of input data (Lobell et al., 2015). Crop 

simulations are used in crop research and management in order to help improve our 

understanding of the factors directly influencing crop growth. They integrate crop, soil, and 

climate data in order to predict crop growth depending on input parameters (van Keulen, 

2013). We simulated daily Leaf Area Index (LAI) values and annual yields for silage maize 

growth in Brandenburg using the Model for Nitrogen and Carbon in Agro-ecosystems 

(MONICA) (Nendel et al., 2014). LAI is a dimensionless quantity used to describe the extent of 

canopy foliage of plants. It is defined by the area of one half of leaf tissue within a given area 

at ground level and is a measurement often used in plant research (Bréda, 2008). LAI can be 

measured indirectly based on an empirical relationship with radio-metric measurements, 

such as VI (Fang and Liang, 2008).  
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MONICA was developed by the Leibniz-Zentrum für Agrarlandschaftsforschung e. V. 

(Leibniz Centre for Agricultural Landscape Research) (ZALF) to predict how climate change 

affects crops at the plot scale in smaller Central European regions. It was originally designed 

to simulate crop growth as well as water and nitrogen uptake, and soil matter dynamics 

(Nendel, 2010; Nendel, 2014). It has been calibrated on a number of crops typically found in 

central Europe, including maize (Nendel, 2014). We considered MONICA a suitable crop 

model for this study, as it is similar to the APSIM model used by Lobell et al. (2015) but was 

developed in Brandenburg and has been calibrated to silage maize under growing conditions 

found within the Brandenburg area. It is nevertheless suitable for simulating crop growth 

across a range of different climates and soils (For further information on MONICA and related 

research, see Appendix 1).The input data utilised for the simulations can be calibrated to 

represent the growing conditions found within the study area (Table 3). We followed closely 

those inputs utilised by Lobell et al. (2015) and added soil type which was considered 

important as the soil in Brandenburg is generally poor with a large proportion of sandy soils 

with little water holding capacity (Grundmann et al., 2012; Gutzler et al., 2015). All 

combinations of the input parameters were used for the SCYM model for this study, including 

all years and weather stations, resulting in 32400 simulations (Table 3). These were then used 

to generate variability in the multiple regression model. 

In order to establish the values for each parameter, we analysed a number of datasets 

acquired from the Deutscher Wetterdienst (German weather service) (DWD) (climate 

(weather stations), years, sowing dates, initial soils moisture) (DWD, 2019a - i) and from the 

Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and 

Natural Resources) (BGR) (soil type) (BGR, 2019a). Each of the DWD datasets were acquired 

for five DWD weather stations within Brandenburg, which we selected due to the distribution 

of their geographical location and temporal availability of the data (Map 2 and Table 4). The 

climate in Brandenburg is described as humid continental (Dfb) in the Köppen climate 

classification with a mean annual temperature of 9.3 °C and total annual precipitation of 

around 580 mm (MLUL, 2016). The climate data summary statistics are outlined in Table 4. 

For fertiliser rates and irrigation, we reviewed reports and existing research to establish 

values (For detailed information of the methods used to establish parameter values, see 

Appendix 2). 
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  Map 2: NUTS3 level districts, the 5 DWD weather stations selected for this study and silage maize  

  fields in 2017 (LGB, 2017).



 

 
 

1
3 

Table 3: Summary of MONICA input parameters used to calibrate SCYM for this study (top row) and those used to calibrate SCYM by Lobell et al (2015) (Maize only). All combinations of the input 

parameters were used for the SCYM model for this study, including all years and weather stations, resulting in 32400 simulations. These were then used to generate variability in the multiple 

regression model (adapted from Lobell et al., 2015) 

Region Crop # weather 
stations 

Years Sowing dates Sowing 
densities 

Fertiliser rates 
(kg N ha-1) 

Initial soil moistures  
(% capacity) 

Cultivar (s) Irrigation Soil types 

Brandenburg Silage 
maize 

5 1992-2018 15-Apr 
1-May 
15-May 

N/A 150, 
170 

58, 
85 

ZALF N/A 20 types, 
See Appendix 5 

Central U.S. 
(Lobell et al., 2015) 

Maize 3 1980-2015 24-Apr 
1-May 
15-May 

4.5, 
7.75, 
9.0 

200, 
300 

60, 
100 

Pioneer_3394, 
Pioneer_long, 
Pioneer_short 

N/A N/A 

Southern Zambia 
(Lobell et al., 2015) 

Maize 1 1998-2012 20-Nov 
1-Dec 
15-Dec 

3.0, 
3.5, 
4.0, 
4.5, 
5.0 

0, 
25, 
50 

60, 
80, 
100 

sc501 N/A N/A 

 

Table 4: Annual climate data for the 5 weather stations for the period 1992-2018 

Station name Mean annual air 
temperature (°C) 

Mean annual wind speed 
(m s-1) 

Mean total annual sunshine 
hours (h) 

Mean total annual precipitation 
(mm) 

Mean annual relative 
humidity (%) 

Angermuende 16.32 3.83 1728.42 225.77 79.80 
Cottbus 17.06 2.89 1758.58 241.89 75.86 
Lindenberg 16.81 3.49 1767.06 238.87 77.80 
Neuruppin 16.47 2.98 1759.75 236.61 79.62 
Potsdam 16.72 4.27 1787.96 243.90 78.94 
All station mean 16.68 3.49 1760.35 237.41 78.40 
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2.1.3 Step 2: Pseudo-observations 

SCYM allows the conversion of daily crop model outputs (LAI) to pseudo observations for the 

relevant sensors (VI). However it is also possible to convert VI to LAI (Jin et al., 2017). In this 

case we converted satellite observations into red-edge normalized difference vegetation 

index (NDVI) and subsequently into LAI. A full description of this method is outlined in section 

2.1.5.2.2. 

 

2.1.4 Step 3: Regression calibration 

One advantage of SCYM is that it estimates yields using both crop model outputs and 

seasonal weather data. Weather data is included to incorporate climatic changes which occur 

after an observation image is captured and which may affect crop growth. For example, an 

image captured early in the growing season with a relatively high LAI may not necessarily 

result in a high yield if drought occurs following image capture. Including the seasonal 

weather data allows for a change in the weather after a particular observation date (Lobell et 

al., 2015). We calculated mean temperature and total precipitation for each weather station 

and year for the mid-late growing season (Day of Year (DOY) 166 to 288) from the DWD 

weather data to include as seasonal weather variables in the regression calibration. These 

weather variables were chosen as they are expected to influence crop growth. We then added 

this data to the corresponding years and weather stations of the MONICA crop model 

simulation outputs. We converted this data into a table with each row representing one daily 

(DOY) LAI output with additional columns for seasonal mean temperature (Tp_av) and 

seasonal total precipitation (Psum). To reduce computation requirements, we kept only data 

with a DOY corresponding to the DOY of observed images for use in the multiple regression 

analysis (See Step 4) (A sample of the data structure is included as Appendix 7). Duplicated 

rows and rows with an LAI of 0 were removed from the data. A number of rows were found 

to differ only in yield, with all other values remaining the same. These rows were aggregated 

to a mean yield in R (Appendix 6). 

We performed multiple regression analysis in R using the lm() function, after first 

checking for collinearity between variables (Appendix 6) (R Core Team, 2018). The SCYM 

generic multiple regression equation is (Lobell et al., 2015): 
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𝒀𝒊𝒆𝒍𝒅 = 𝜷𝟎,𝒅  +  𝜷𝟏,𝒅  ∗  𝑾 +  𝜷𝟐,𝒅  ∗  𝑹𝑴𝒅  +  𝜷𝟑,𝒅  ∗  𝑾 ∗  𝑹𝑴𝒅     (1) 

 

where W is a vector of seasonal weather attributes, RM is a vector of remote sensing based 

measures on specific dates (d), and all coefficients (β) are specific to the particular dates. For 

this study, the multiple regression equation is therefore:  

 

𝒀𝒊𝒆𝒍𝒅 =  𝜷𝟎,𝒅 + 𝜷𝟏,𝒅 ∗ 𝑻𝒑𝒂𝒗 + 𝜷𝟐,𝒅 ∗ 𝑷𝒔𝒖𝒎 + 𝜷𝟑,𝒅 ∗ 𝑳𝑨𝑰𝒅 + 𝜷𝟒,𝒅 ∗  𝑻𝒑_𝒂𝒗 ∗  𝑳𝑨𝑰𝒅 + 𝜷𝟓,𝒅 ∗ 𝑷𝒔𝒖𝒎 ∗ 𝑳𝑨𝑰𝒅 (2) 

 

where W is replaced by the seasonal weather variables (mean temperature and total 

precipitation) and LAI is the remote sensing based measure. This model includes interaction 

terms between mean temperature and LAI, and total precipitation and LAI. The model was 

therefore tested against simpler versions to establish how well the simpler models performed 

(Appendix 8). We found that including the interaction terms produced a better model. The 

model is able to explain 53% of the variability in silage-maize yields. A table of coefficients 

was created with each line representing each DOY found within the input dataset (Appendix 

9). 

 

2.1.5 Step 4: Yield estimation 

2.1.5.1 Silage maize field mask 

It is a requirement of SCYM that fields containing the relevant crop are known in 

advance so they can be masked in order to calculate yield at the field level. We masked silage 

maize fields in Brandenburg in 2017 using data from the Integrierten Verwaltungs- und 

Kontrollsystem (InVeKoS) (Integrated Administration and Control System (IACS)) (LGB, 2017). 

The IACS was introduced by the EC in 1992 to improve efficiency in distributing subsidies to 

farmers under the CAP. Under the system, farmers are obliged to annually report the crops 

planted on each parcel of agricultural land under their control. Since 2005, the reporting has 

been carried out online using GIS software. Each parcel of agricultural land is therefore 

documented, including size, geometry and crops. Each member state is responsible for 

implementing their own system in order to ensure accurate reporting (FAO, n.d. b; EC, n.d., 

b). In Germany, the reporting system is known as InVeKoS (Bundesamts für Justiz, 2015). Each 

state within Germany is responsible for administering its own system. In Brandenburg, this is 

carried out through the Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft 
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(Ministry for Rural Development, Environment and Agriculture) and is available online 

through the LGB geoportal (LGB, 2019). Within the InVeKoS dataset for 2017, four types of 

maize are listed. Two of these, ‘Mais (Biogas)’ (Maize for Biogas) and ‘Silomais (als 

Hauptfutter)’ (Silage maize as animal feed) relate to silage maize. We extracted fields 

containing these two crops from the InVeKoS dataset to create a silage maize field mask 

consisting only of fields where silage maize was grown in Brandenburg in 2017. Any fields 

located within the Berlin border were removed. The summary statistics from the resulting 

data can be found in table 5. 

 

Table 5: Summary statistics for silage maize fields in Brandenburg in 2017 (LGB, 2017) 

No. of 

fields 

Total area 

(ha) 

Min 

area 

(ha) 

Max area 

(ha) 

Mean 

area (ha) 

Median 

area (ha) 

Standard 

deviation 

1st quartile 

area (ha) 

3rd quartile 

area (ha) 

11488 154734.2628 0.0005 228.7700 13.4692 8.3935 15.3062 3.5665 17.8330 

 

2.1.5.2 Google Earth Engine implementation (See Appendix 10 for GEE code) 

2.1.5.2.1 Importing data into Google Earth Engine 

The SCYM method employs the GEE platform in order to obtain satellite images, to 

calculate LAI on a per pixel basis and to estimate yields. To achieve this we imported the table 

of coefficients resulting from the multiple regression analysis in GEE through a google fusion 

table (Appendix 9). We imported the silage maize field mask into GEE as a GEE table.  

SCYM requires a selection of images with a high temporal resolution in order to obtain 

a sufficient number of LAI values across the growing season. The Sentinel-2 mission’s twin 

satellite constellation provides a combined temporal resolution of 5 days and a spatial 

resolution of 10m, 20m and 60m depending on the spectral band (European Space Agency 

(ESA), 2015). We obtained all available ‘Sentinel-2 MSI: MultiSpectral Instrument, Level-1C’ 

images covering the study area for the growing season period from DOY 135 to 288 for 2017 

and clipped this image collection to the silage maize field mask. The image collection was then 

mapped to a cloud mask to create a cloud free collection (Google Developers, 2019a). Level-

1C imagery includes radiometric and geometric corrections with top of atmosphere (TOA) 

reflectance (ESA, 2015). 
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2.1.5.2.2 Calculating vegetation indices and LAI 

To convert per pixel VI to LAI, one first has to calculate an appropriate VI from the 

image spectral bands. VI describe the vegetation present at a given location by maximising 

the sensitivity to vegetation and minimising other factors such as soil or optical effects. A 

multitude of VI have been used in research. VI take the form of ratios and can be calculated 

from the spectral bands of remotely sensed optical images, usually incorporating red and near 

infrared (NIR) reflectance (Fang and Liang, 2008).  

Lobell et al. (2015) converted LAI to Green Chlorophyll Vegetation Index using a 

regression equation developed by Nguy-robertson et al. (2012). Nguy-Robertson et al. (2012) 

tested twelve VI for estimating LAI in maize and calculated regression equations for estimating 

LAI from VI. For high resolution images containing red-edge and NIR spectral bands, they 

suggest using a Combined Vegetation Index (CVI) in the form of 𝐶𝑉𝐼{𝑟𝑒𝑑 −

𝑒𝑑𝑔𝑒 𝑁𝐷𝑉𝐼, 𝐶𝐼𝑟𝑒𝑑 − 𝑒𝑑𝑔𝑒}. Using this CVI offers maximum sensitivity to LAI across the range 

of variability. 

In order to calculate red-edge NDVI, Nguy-Robertson et al. (2012) use the equation 

(𝑁𝐼𝑅 –  𝑟𝑒𝑑 𝑒𝑑𝑔𝑒) / (𝑁𝐼𝑅 +  𝑟𝑒𝑑 𝑒𝑑𝑔𝑒) from Gitelson and Merzlyak (1994) and suggest that 

this equates to (𝑀𝐸𝑅𝐼𝑆 12 –  𝑀𝐸𝑅𝐼𝑆 9) / (𝑀𝐸𝑅𝐼𝑆 12 +  𝑀𝐸𝑅𝐼𝑆 9) or (778.75𝑛𝑚 −  708.75) /

 (778.75𝑛𝑚 +  708.75)  when adapted to the medium-spectral resolution imaging 

spectrometer (MERIS) satellite (ESA, 2012). Sentinel-2 data contains one NIR band (band 8) 

and three vegetation red edge bands (bands 5, 6 and 7). However band 8 has central 

wavelengths of 832.8nm (Sentinel-2A) and 832.9nm (Sentinel-2B) placing it spectrally distant 

from the MERIS NIR band suggested by Nguy-Robertson et al. (2012). The nearest equivalent 

spectral bands in Sentinel-2 images are band 5 (Red Edge 1 = 703.9nm (2A) and 703.8nm (2B)) 

and band 7 (Red Edge 3 = 782.5nm (2A) and 779.7nm (2B)) (ESA, 2015). Onyia & Balzter (2018) 

use (750𝑛𝑚 –  705𝑛𝑚) / (750𝑛𝑚 +  705𝑛𝑚) for calculating red-edge NDVI. Arroyo-mora et 

al. (2018) use Sentinel bands 5 and 6 (703.9nm and 703.8nm; 740.5nm and 739.1nm). We 

elected to use Sentinel-2 bands 5 and 7 to calculate red-edge NDVI, in order to correspond 

with the MERIS spectral bands used by Nguy-Robertson et al. (2012) when developing the 

appropriate equation. Thus we added an additional red-edge NDVI band to the Sentinel-2 

image collection using the equation: 

 

𝒓𝒆𝒅 − 𝒆𝒅𝒈𝒆 𝑵𝑫𝑽𝑰 =  ((𝒃𝒂𝒏𝒅 𝟕 –  𝒃𝒂𝒏𝒅 𝟓) / (𝒃𝒂𝒏𝒅 𝟕 +  𝒃𝒂𝒏𝒅 𝟓))    (3) 
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We added a DOY band to the image collection by extracting the capture date from the 

metadata for each image. We then created an image composite based on the maximum red-

edge NDVI for each pixel across the image collection using the embedded GEE function 

‘.qualityMosaic’. This resulted in a composite image where each pixel’s data relates to the 

DOY within the growing season on which the maximum red-edge NDVI was recorded and for 

which a cloud free image was available. 

The resulting composite is comprised of images captured throughout the growing 

season (Figure 2, Map 3 (a) and Map 4 (b)). However the majority of images originated from 

four acquisition dates (DOY: 211, 218, 221 and 241). There are a number of outliers in the 

early and late season with dates ranging from 151 to 281. 

 

 

 Figure 2: Per pixel distribution of the day of year of maximum red-edge NDVI from the composite satellite image 

 

To calculate LAI we divided the composite image into two parts; pixels where red-edge 

NDVI was less than 0.6 and pixels where red-edge NDVI was greater than or equal to 0.6 

(Nguy-Robertson et al., 2012). We then calculated the LAI for each pixel within these images 

using the equations outlined in Nguy-Robertson et al. (2012). For red-edge NDVI less than 0.6: 

 

𝒓𝒆𝒅 − 𝒆𝒅𝒈𝒆 <  𝟎. 𝟔: (𝒓𝒆𝒅 − 𝒆𝒅𝒈𝒆 𝑵𝑫𝑽𝑰 –  𝟎. 𝟏𝟑)/𝟎. 𝟏𝟒     (4) 
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For red-edge NDVI greater than or equal to 0.6, we first converted the values to Chlorophyll 

Index (CI) red-edge. Nguy-Robertson et al. (2012) define CI red-edge as ((𝑁𝐼𝑅 / 𝑟𝑒𝑑 𝑒𝑑𝑔𝑒) – 1)  

or ((𝑀𝐸𝑅𝐼𝑆 12 / 𝑀𝐸𝑅𝐼𝑆 9) – 1) or((778.75𝑛𝑚 / 708.75) − 1). Zhang, et al. (2018) define CI 

red-edge as ((783𝑛𝑚 / 705𝑛𝑚)  − 1), which they relate to bands 7 and 5 in Sentinel-2 data 

respectively. Thus we calculated CI red-edge using the equation: 

 

𝑪𝑰 𝒓𝒆𝒅 − 𝒆𝒅𝒈𝒆 =  ((𝒃𝒂𝒏𝒅 𝟕 / 𝒃𝒂𝒏𝒅 𝟓)  − 𝟏)       (5) 
 

We then calculated the LAI for CI red-edge pixels using the equation from Nguy-Robertson et 

al. (2012): 

 

((𝑪𝑰 𝒓𝒆𝒅 − 𝒆𝒅𝒈𝒆 –  𝟎. 𝟔𝟑) / 𝟎. 𝟗𝟓)        (6) 

 

Finally we mosaicked the two images back into one composite image using the embedded 

GEE function ‘.mosaic’. 

 

2.1.5.2.3 Adding seasonal weather variables 

We added seasonal weather variables for each pixel to correspond with the seasonal 

weather variables input into the multiple regression analysis. To achieve this, the ‘GLDAS-2.1’ 

(Beaudoing, 2016; Rodell et al., 2004) and ‘PERSIANN-CDR’ (Ashouri et al., 2014; Sorooshian 

et al., 2014) datasets available within GEE were utilised. GLDAS provides 3-hourly air 

temperature readings (K) at 2m above the ground surface with a spatial resolution of 0.25° by 

integrating ground based and satellite data. PERSIANN-CDR provides daily precipitation (mm) 

readings with a spatial resolution of 0.25°. For both variables, we created an image collection 

consisting of data for the growing season DOY 166 to 288. We then created two composite 

images based on the mean temperature (after conversion to °C) and total precipitation for 

each pixel within the growing season. We then added these two image bands to the LAI image 

composite. Each pixel within the composite thus consisted of four bands: LAI, DOY, mean 

temperature (Tp_av) and total precipitation (Psum). 

 

2.1.5.2.4 Simulating silage maize yield 

At this stage, each pixel contains the required data corresponding to the multiple 

regression equations. Thus, by first extracting the DOY for each pixel from the DOY band, then 
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looking up the corresponding regression coefficients in the coefficients table, we were able 

to simulate yield for each pixel. Finally, we added the resulting yield values as a band to the 

composite image and exported the image from GEE as a GeoTIFF raster. GEE divides rasters 

into smaller tiles for export. Thus, after export, we mosaicked the exported raster files in R 

using mosaic:raster (Hijmans, 2018). This final raster file was then analysed for results in QGIS 

(QGIS Development Team, 2019). 

 

2.2 Validation 

Silage maize yields are not officially recorded at field level. We obtained validation 

data from the AfSBB at the Nomenclature of territorial units for statistics (NUTS) 2 and 3 level. 

In Germany, NUTS2 regions consist of Bundesländer (states) and NUTS3 regions consist of 

Kreisfreie Städte and Landkreise (independent towns and districts) (Eurostat, 2018). In 

Brandenburg, there are 14 districts and 4 independent towns. We excluded independent 

towns from validation, as official yield data does not exist for these areas. A NUTS3 shapefile 

was obtained from the Bundesamt für Kartographie and Geodäsie (Federal Agency for 

Cartography and Geodesy) (BKG) (BKG, 2019). 

To validate the field level data we first obtained the mean SCYM simulated yield (kg 

ha-1) for each silage maize field using the zonal statistics tool in QGIS before re-calculating to 

produce mean yield for each field in dt ha-1 to match the unit of the validation data. The 

validation data provided by AfSBB is the fresh matter weight. The MONICA crop model yield 

output is dry matter content, which consists of 35% of the fresh matter (AfSBB, 2017; 

Gottschalk et al., 2018) and approximately 10% of the crop remains in the field as stubble 

after harvesting. In order to compensate for this, we first scaled the SCYM simulated yield 

from 35 to 100% to produce a fresh matter yield before subtracting 10% to produce an overall 

yield to match the validation data. 

To aggregate this to NUTS3 level, we used the Aggregate tool in QGIS. We first 

summed the simulated total yield (kg) to produce a total simulated yield (kg) for each NUTS3 

district before recalculating to dt ha-1 based on the total area of silage maize fields in each 

district. The same procedure was used to simulate mean yield in dt ha-1 at the NUTS2 level. 
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3. Results 
3.1 MONICA crop model output 

The crop model output produced 32400 simulations. The simulation results include a 

time series of crop growth recorded as daily LAI (Figure 3) together with an overall yield. The 

results show that in a number of simulations crop growth was limited with a lowest maximum 

LAI of 0.03 (Table 6). This resulted in a right skew in the maximum LAI data (Figure 4) with the 

1st quantile result of 2.51 being only slightly less than the mean of 2.71. However, almost two 

thirds of the simulations produced an LAI greater than or equal to 2.71. The DOY on which the 

maximum LAI was produced ranges from the 135 to 287 with the days normally distributed 

around the mean of 207 (Figure 5). The distribution of the yield output follows a similar 

pattern to the maximum LAI in that it is skewed to the right (Figure 6). The Pearson correlation 

coefficient of R = 0.73 (p = < 0.01) and scatter plot (Figure 7) shows that maximum LAI and 

yield are strongly significantly positively correlated. Figure 9 suggests that yield increases as 

the day on which maximum LAI occurs becomes later until around the mean of the DOY of 

the maximum LAI (207), after which the yield tends to decrease with later days. 

 

 

 Figure 3: The LAI of a random sample of 500 MONICA crop model simulations throughout the 

 growing season. Each black line represents one simulation. The red line represents the mean. 

 Vertical lines show where harvesting has occurred. 
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Table 6: Summary statistics of the MONICA crop model simulations output 

 Min Max Mean Median Mode SD 1stQuantile 3rdQuantile 

maxLAI 0.03 4.47 2.71 2.87 NA 0.70 2.51 3.17 

DOY of maxLAI 135 287 206.9 207 209 13.37 200 214 

Yield (dry matter) (kg ha-1) 10.8 17806.2 10749.1 11393.5 NA 3678.8 8213.8 13627.5 

 

 

 Figure 4: The density distribution of maximum LAI from the MONICA crop model simulations. 

 The dashed red line represents the mean. 

 

 

 Figure 5: The density distribution of the day of the maximum LAI from the MONICA crop model 

 simulations. The dashed red line represents the mean. 
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 Figure 6: The density distribution of the yield from the MONICA crop model simulations. The 

 dashed red line represents the mean. 

 

 

 Figure 7: Scatterplot showing the correlation between yield and maximum LAI from the MONICA 

 crop model simulations. The red line represents the regression line and shows a linear relationship 

 between these two outputs variables. 
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 Figure 8: A comparison of yield (kg ha-1) and the day of the maximum LAI from the MONICA crop 

 model simulations 

 

3.2 Multiple regression 

The multiple regression produced an overall model with an adjusted R2 of 0.53 (p = < 

0.001) suggesting that the model explains around 53% of overall yield. Daily model output 

was also considered, as the model varies depending on the DOY. This is an important 

parameter as SCYM estimates yields based on the inputs on a particular day. The adjusted R2 

values for each DOY model ranged from 0.26 to 0.74 (Figure 9). Models corresponding to DOY 

greater than or equal to 189 provide a good model fit with R2 values ranging from 0.63 to 

0.74. Maximum R2 was produced by the model for DOY 226. However for DOY less than 189 

the model does not provide a good fit (For detailed results of the amongst DOY model 

variability see Appendix 11 and 12). 
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 Figure 9: The adjusted R2 for each multiple regression DOY model for days on which an image exists in the 

 Sentinel-2 composite. 

 

3.3 SCYM silage maize yield simulation 

3.3.1 Pixel level 

At pixel level, SCYM simulated yield ranged from 69 to 741 dt ha-1 (Map 3 (b), and Map 

4 (a), (c) and (d)). Map 3 provides an indication of the distribution of DOY, simulated yield and 

the weather variables input into the multiple regression across the Prignitz (NUTS3) district. 

The distribution of the weather variables follows that of the spatial scale, revealing the low 

variance within the data (Map 3 (c) and (d)). The spatial distribution of DOY is fragmented 

(Map 4 (b)). In contrast, the simulated yield displays a fluid spatial distribution pattern (Map 

4 (c) and (d)). 

 

3.3.2 Field level 

At field level, simulated yield ranges from 151 – 757 dt ha-1 with a mean of 409.1 dt 

ha-1 (Map 5 and Table 7). Yields display a normal distribution around the mean with a small 

number of outliers at the extremes (Figure 10).  
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 Map 3: Close-up view of the distribution of (a) Maximum red-edge day of year composite pixels, (b) SCYM simulated 

 silage maize yield, (c) Total growing season precipitation and (d) Mean growing season temperature 

 

 Map 4: Detailed view of the distribution of SCYM simulated maize yield in Prignitz (a, c and d) and the composite 

 day of  year (b). The background colours correspond to the inset areas shown on the coarser scale maps.  

(a) (d) 

(b) (c) 

(a) 

(b) (c) 

(d) 
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 Map 5: SCYM simulated maize yields in 2017 at field level (dt ha-1). Colour scale is designed to highlight the lowest  

 and highest values whilst providing a scale for the majority of values distributed around the mean. 

 

Table 7: Summary statistics of simulated maize yields for Brandenburg in 2017 

following SCYM method at field and NUTS3 level 

 Min Max Mean Median SD 1stQuantile 3rdQuantile 

Field 150.7 757.3 409.1 405.8 60.27 364.7 449.6 

NUTS3 386.4 481 428.2 430.6 25.62 411.4 442.8 
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 Figure 10: Distribution of simulated yields across maize fields in Brandenburg 

 following SCYM methods. Red dashed line represents the mean. 

 

3.3.3 NUTS3 level 

At NUTS3 level, simulated yield ranged from 386 (Uckermark) to 481 (Brandenburg an 

der Havel) dt ha-1 (Table 7 and Figure 11). The yield variation is well distributed across the 

state, with some areas appearing to show patterns of clustering with neighbouring states 

(Ostprignitz-Ruppin, Havelland, Potsdam-Mittelmark, Teltow Flaeming; Dahme-Spreewald, 

Cottbus, Spree-Neisse) (Map 6). 

 

 

 Map 6: Simulated yields at NUTS3 level following SCYM method
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 Figure 11: Simulated maize yields for each district in Brandenburg in 2017 following SCYM method. Dashed red line  

 represents the mean. 

 

3.3.4 Validation 

A comparison of SCYM simulated yields with AfSBB data at NUTS 3 level, shows that 

SCYM underpredicted in two districts (Uckermark and Potsdam-Mittelmark) (Maps 7 and 8, 

Figure 12 and Table 8). Some areas display patterns of clustering with neighbouring states. 

Oberhavel, Barnim, Maerkisch-Overland and Oder-Spree all overpredicted within 30 dt ha-1 

(Map 7). When considered as factors, six districts were within 10% of the AfSBB data, all of 

which are located on the eastern side of Berlin. Six districts were within 10-20% of the AfSBB 

data, all of which are located on the west and south-west of Berlin (Map 8). The districts of 

Oberspreewald-Lausitz and Spree-Neisse, both of which are located in the far south of 

Brandenburg, show the largest differences between SCYM and AfSBB with a difference of 21% 

and 29% respectively. When the entire state is considered, SCYM overpredicts maize in 

Brandenburg in 2017 by 9% (Figure 12 and Table 8). Statistically, SCYM and AfSBB data have 

a weak non-significant positive correlation at NUTS3 level (R = 0.28, P = 0.32) (Figure 13) 

(Shapiro-Wilks test for normal distribution: AfSBB = 0.95, SCYM = 0.98).
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 Map 7: Difference between SCYM simulated yields and AfSBB yields (dt ha-1). 

 

 

 Map 8: The difference between SCYM simulated yields and AfSBB yields as a  

 Factor. Within 0.1 = SCYM is within 10% of AfSBB.
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 Figure 12: Difference between simulated maize yield in Brandenburg in 2017 following the SCYM method and the AfSBB  

 results at district level as factors. The dashed red line represents a factor of 1.0. Points above the line represent overpredicted 

 districts, below the line represents underpredicted districts. 

 

Table 8: Comparison of simulated maize yields in Brandenburg in 2017 at NUTS3 and NUTS2 level 

following SCYM method with the AfSBB results. 

District SCYM AfSBB Difference (dt/ha) Difference (factor) 

Barnim 405.1 378.3 26.8 .07 

Dahme-Spreewald 430.3 364.8 65.5 .18 

Elbe-Elster 398.1 254.2 43.9 .12 

Havelland 420.3 383.7 36.6 .10 

Maerkisch-Oderland 439 421.3 17.7 .04 

Oberhavel 391.6 367.9 23.7 .06 

Oberspreewald-Lausitz 453.5 375.2 78.3 .21 

Oder-Spree 462.2 442.3 19.9 .04 

Ostprignitz-Ruppin 413.6 365.5 48.1 .13 

Potsdam-Mittelmark 410.6 411 -0.4 0 

Prignitz 436.4 370.7 65.7 .18 

Spree-Neisse 431.7 333.7 98 .29 

Teltow-Flaeming 415 368.5 46.5 .13 

Uckermark 386.4 404.9 -18.5 -.05 

Brandenburg (state) 420.9 385.4 35.5 .09 
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 Figure 13: Scatterplot of the correlations between the simulated maize yields in Brandenburg 

 in 2017 following SCYM methods and the AfSBB results with a Pearson correlation of R = 0.28 

 

4. Discussion 
4.1 Summary of findings 

We found that when compared to official statistics provided by the AfSBB, the SCYM 

method showed a weak positive correlation of 0.28, although the correlation was not found 

to be statistically significant (p = 0.32) ((Figure 13). Therefore, around 8% of the variation in 

maize fields in Brandenburg is captured by the SCYM method. We found that in three districts, 

the SCYM method was within a factor of 0.05 and for a further three districts within a factor 

of 0.1. Furthermore, we found that SCYM overestimated maize yields in 12 of the 14 districts 

for which validation data was available. 

 

4.2 MONICA crop model simulations 

The MONICA crop model simulations produced a range of maximum LAI from 0.03 to 

4.47. In their research on the interactions of water and Nitrogen on silage maize, Gheysari et 

al. (2009) reported maximum LAI of between 3 and 4 for silage maize, dependent on fertiliser 

application and irrigation levels. Nguy-robertson et al. (2012) researched the temporal 

dynamics of LAI in a selection of corn maize varieties in Nebraska, USA and found that 

maximum LAI was 4.3 in rainfed fields. Lobell et al. (2015) describe a large variability in the 



 

33 
 

maximum LAI from their simulations, spanning a factor of two to three. Whilst they do not 

report specifically the range of the maximum LAI their simulations produced, it can be 

deduced from their report that the range of maximum LAI was between 2 and 4. Thus, the 

maximum LAI from the MONICA simulations is in the range of what one would expect for 

rainfed silage maize. 

The mean and median values of the maximum LAI (Table 6) suggest that a number of 

simulations produced low maximum LAI values.  These are likely as a result of water stress in 

simulations caused by a combination of low rainfall and poor soils. Nevertheless 

approximately two thirds of the MONICA simulations produced LAI above the mean.  

The MONICA crop model simulations produced a range of dry matter yields from 0.1 

to 178.1 dt ha-1. Lobell et al. (2015) reported yields from their crop model simulations ranging 

from 0 – 155 dt ha-1. It is presumed (although not directly stated) that these results relate to 

dry matter. In Brandenburg the mean silage maize yield per year for the period 2002 to 2018 

is 173 dt ha-1 (Ebel & Barthelmes, 2019) suggesting that the MONICA simulations are within 

the realms of the expected results. However, there are a number of low yields linked to the 

simulations which produced a low maximum LAI, resulting in a distribution of yields following 

a similar pattern to the distribution of maximum LAI (Figures 4 and 6). This is to be expected 

given the correlation identified between these outputs (Figure 7). Overall the simulations 

provide a wide variety of results in terms of both LAI and yield for input into the multiple 

regression model. 

 

4.3 Multiple regression 

The multiple regression produced an overall model with a good model fit, but the models 

ability to predict yield is dependent on the DOY on which a particular image was captured 

(Figure 9). The distribution of model fit across the growing season produced an arching effect, 

with model accuracy improving up until the peak of the growing season following which 

model accuracy begins to decline. There are a number of factors which influence this. Firstly, 

as the growing season progresses, model accuracy improves due to the declining variability 

in future crop growth. This is intuitive, as in the early stages the scale of possibilities for crop 

growth is large and there are many unknowns in the coming months. However as the season 

progresses, the number of possible outcomes declines, potentially leading to more accurate 



 

34 
 

predictions, i.e. the more established a crop is, the more accurate the prediction is likely to 

be. Furthermore, fields sown at a later date will show late onset of crop growth which may 

not be captured in the earlier images, e.g. fields sown on day 135 (the last day for which 

sowing was possible in the MONICA simulations) may still show zero LAI by the time the 

earliest images are captured on DOY 151. That said, if they show zero LAI, it is unlikely that 

this will be the maximum LAI image available for this location through the growing season. 

The declining accuracy in the latter part of the growing season, is likely due to maximum LAI 

having already occurred, i.e. for images taken after maximum LAI has occurred, predictions 

are based on LAI that is less than the LAI was at its maximum. In maize, maximum LAI is 

reached when silking begins, which is the beginning of the plant reproductive stage. This is 

followed by a decrease in LAI until zero LAI occurs at maturity (Nguy-robertson et al., 2012). 

The model is not able to predict yields for these images as accurately as earlier images, as it 

cannot know what the maximum LAI was and the variety of maximum LAI is too varied. 

Although the model produced by Lobell et al. (2015) provided a better overall model 

fit, they also found that the model accuracy improved through the growing season resulting 

in an optimum window from which images could be selected in order to capitalise on the most 

accurate model. By first training a regression model on all of the days within the growing 

season, it is possible to choose a minimum DOY and maximum DOY between which satellite 

images could be selected. For instance, if only images on days where the regression model 

was able to explain 60% of variability were used, the window for images would be days 185 

to 275 (Figure 9). This would have the advantage of increasing overall model accuracy but 

would reduce the chances of obtaining cloud free images for every location within the study 

area. Furthermore, an advantage of SCYM is that images obtained on any date within the 

growing season, can be used to predict yield (Lobell et al., 2015). As such, whether or not an 

advantage can be gained by utilising this narrow window approach is questionable. This could 

however be tested in future research to establish whether it would be advantageous for the 

Brandenburg region. For this study, the overall model accuracy was considered sufficient for 

a first look into the feasibility of simulating yield in Brandenburg using the SCYM method (For 

a detailed discussion about the amongst DOY model variability see Appendix 11 and 12). 
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4.4 SCYM Pixel level yield simulation 

The red-edge NDVI composite image is comprised of images captured throughout the 

growing season with a core element captured in the peak season and a number of outliers in 

the early and late season. The early season outliers are likely a result of a lack of available 

cloud free images before maximum LAI is reached, as one would expect any vegetation at 

these locations to continue to grow unless an event occurs which prevents further growth. 

The late season outliers may also be as a result of a lack of cloud free images at these locations 

until the late season. However, two further factors may also play a role here. Firstly, late 

sowing at these location may have resulted in maximum LAI occurring at a later date. 

Secondly, mixed pixels at these locations could be influencing the timing of the maximum 

yield.  

The fragmented distribution of DOY revealed at the pixel level (Map 4, (b)) is the result 

of a combination of image availability and the maximum red-edge NDVI. When compared to 

the yield distribution (Map 4 (c) and (d)) it is evident that yield variability is independent of 

the DOY. The fluid pattern of the yield displays a realistic pattern of how one would expect 

yield to vary within a particular field. Geomorphological elements such as depressions and 

rises affect parameters such as soil type, soil moisture and soil layer distribution, all of which 

can influence yields. This pattern indicates that despite the variation both in image dates and 

LAI on image dates, the SCYM method is able to nevertheless produce a realistic pattern of 

yields, in line with the patterns one would expect to find within a field of maize. 

 

4.5 SCYM Field level yield simulation 

Although no validation data is available at this level, the rescaling of the pixel level 

results to field level provides results per hectare and therefore offers an opportunity to 

discuss and compare the summary statistics to previous research and expected results. 

The distribution of yield reveals a wide range of results with some fields producing 

considerably lower than expected yields and some producing considerably higher (Map 5, 

Table 7 and Figure 10). Whilst it is possible that crops in some parts of fields are subject to 

stresses which limit growth, it is unlikely that the yields at the higher end of this range are 

realistic, given the conditions found within Brandenburg. It may be that pixel size and field 

size both play a role here. When Burke & Lobell (2017) investigated the role of field size in 
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yield variation, they found that smaller field sizes produced less accurate results than larger 

fields. The minimum field area within the silage maize mask is 5.5 m2 (LGB, 2017). This is 

considerably smaller than the pixel area of 400 m2 obtained from the 20x20 m spectral bands 

used to estimate LAI. If a particularly small field is found within a pixel with a high LAI due to 

the presence of other vegetation within the pixel, this field will subsequently receive an 

excessively high yield, once adjustment for field size is taken into account. 

However, the yields follow a normal distribution with a mean of 409 dt ha-1 (Table 7 

and Figure 10). Given the standard deviation of 60 dt ha-1, 68% of all fields are within 349 to 

469 dt ha-1 and 95% are within 289 to 529 dt ha-1. As the mean silage maize yield per year for 

the period 2002 to 2018 in Brandenburg is 444.8 dt ha-1 (90%) with a standard deviation of 71 

dt ha-1 (Ebel & Barthelmes, 2019) and that the mean yield for Brandenburg in 2017 was 

reported as 385.4 dt ha-1 (AfSBB, 2017), one can state that the results at field level are within 

the realms of the expected results. Nevertheless, it is difficult to provide more concrete 

assertion, given the lack of validation data at this level. 

 

4.6 SCYM NUTS3 level yield simulation and validation 

Aggregation of the results to district level offers the opportunity to validate the results 

against those provided by AfSBB. As previously discussed, validation data is limited to the 

NUTS3 level, due to a lack of official data provided by the state. At this level, validation data 

is limited to 14 observations, each of which covers a large area, reducing the yield variation 

found within each of these areas into one value. As such, it is difficult to provide an accurate 

assessment of the accuracy of the SCYM method in Brandenburg. However, it is possible to 

provide a detailed overview of the results and to compare the results to the validation data 

and previous research involving SCYM, in order to make some assertions on the ability of 

SCYM to simulate yields for Brandenburg. 

Examination of the correlations between the SCYM method results and AfSBB data 

reveals a weak positive correlation between the two datasets (r = 0.28, p = 0.32, R2 = 0.08) 

(Figure 13) meaning that the SCYM method is able to explain 8% of the yield variability within 

Brandenburg. This is lower than the weakest result of Lobell et al. (2015) who found that 

SCYM was able to explain between 14 and 58% of yield variation within maize fields in the US 

Midwest, albeit at field level. Lobell & Azzari (2017) were able to capture 67% of the variation 
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in maize yields at county level and 55% at within county level in the US Midwest. Similarly, 

Azzari et al. (2017) were able to capture at least 50% of maize yield variation in the US but 

reported poorer results when adapting SCYM for irrigated wheat fields in India and maize in 

Gambia. Jin et al. (2019) reported that SCYM was able to capture between 40 and 55% of 

maize yield variation at district level in Kenya. Thus, when validated in this manner, SCYM 

performed poorly compared to previous studies. 

SCYM has been proven to produce results which match the accuracy of ground based 

measures in the study region (Burke & Lobell, 2017) and is designed to estimate yield without 

the need for ground based validation data (Azzari et al., 2017; Burke & Lobell, 2017; Jin et al., 

2017, 2019; Lobell & Azzari, 2017; Lobell et al., 2015). Furthermore, Azzari et al. (2017) noted 

a decrease in model accuracy correlated with a decrease in the quality of the field based 

measures used for validation. Burke & Lobell (2017) noted that agreements between SCYM 

and validation data were strongest when confidence in the validation data was highest and 

that errors in the field data were just as likely to cause discrepancies as errors in the satellite 

based estimates. As such, it is prudent to consider whether the ground based field data 

available in Brandenburg is accurate enough to validate SCYM. 

The AfSBB estimate yields based on a survey completed by farmers or by reporters 

appointed on their behalf. The completion of the survey is not mandatory. The selection of 

farms chosen is not random, due to a lack of response from farmers unwilling to complete 

the survey. Instead a selection from a list of participants known to respond are asked to 

compete the survey. The estimations are based on subjective impressions and therefore vary 

in accuracy depending on the experience of the farmer or reporter. The location attributed to 

the yield estimation is based on the registered company address of the farm and not on the 

location of the particular field. The estimated yield per hectare for a particular region is 

calculated based on the estimated yield from these surveys and the total area of crop included 

in the surveys in that region. These results are aggregated to higher levels including state and 

national level. In some regions too few or even no responses are received from farmers. In 

these circumstances, the yield is estimated based either on neighbouring regions or weighted 

by the national average. Furthermore, the quality of the yield estimations is decreasing and 

estimations are becoming harder to obtain (AfSBB, 2017). 

This form of non-probability survey sampling adopted by AfSBB is known as 

Convenience sampling and comes with a number of sources of bias. It is unlikely to provide 
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good coverage of the entire population and the reliance on volunteers with varying degrees 

of expertise can lead to discrepancies in the results. Furthermore, there is a high risk that 

survey results obtained from Convenience sampling will differ substantially from the reality 

(Baker et al., 2013). This method of yield estimation fails to account for the heterogeneity of 

maize yields found amongst farms and within individual maize fields (Lobell & Azzari, 2017). 

Thus, one must conclude that the sampling method adopted by the AfSBB in order to estimate 

maize yield at NUTS3 level, carries large uncertainties and cannot be relied upon in these 

circumstances. 

Given that SCYM model accuracy correlates with the quality of validation data, it is fair 

to speculate that a large proportion of the inaccuracy found when analysing the results of this 

research is a result of the inaccuracy of the validation data and not of the model itself. It is 

impossible to check the validity of this statement without repeating this research using highly 

accurate validation data. Burke & Lobell (2017) recommended using survey teams to precisely 

measure yields in fields which have been georeferenced using GPS coordinates. This method 

could be carried out in Brandenburg by selecting a large number of geographically well 

distributed silage maize fields, measuring their precise yield in a particular year and 

comparing this to the SCYM results for those fields in that year. 

Despite the discrepancies with the validation data, it is nevertheless prudent to discuss 

the distribution of results at NUTS3 level, as the SCYM method discussed here maybe more 

accurate than the validation data suggests. The simulated yields ranged from 386.4 to 462.2 

dt ha-1 giving a range of 75.8 dt ha-1 between districts. Given the maximum of 462.2 dt ha-1 

one can say that the yield varies by 16.4% across districts. 

The spatial distribution of simulated yield provides some interesting results in terms 

of the clustering of similar yields with neighbouring districts (Map 6). Larger yields tend to be 

found within the south east of Brandenburg. When compared to the spatial distribution of 

the seasonal weather variables (Map 9) obtained from GEE and used to predict yield, one 

could hypothesise that the seasonal weather in the southeast, which was both warmer and 

wetter in 2017 than the rest of Brandenburg, could be having a greater influence on yields 

than other parameters within the model. Whilst, low-medium positive correlations were 

found between both of these variables and simulated yield (Temp: R = 0.36; Prec: R = 0.50) 

neither of the correlations were found to be statistically significant. 
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If the validation data are taken as true values then the SCYM model overestimated 

yield in twelve out of fourteen districts and by a factor of 1.09 on average across districts 

(Table 7 and Figure 13). Lobell & Azzari (2017) also found that SCYM tended to overestimate 

yield and attributed this to the crop model they used to produce simulations’ (APSIM) inability 

to account for loss factors, such as disease or pests, or to underestimation of leaf area to yield 

production. Whilst this may of course be the case here, it is difficult to pinpoint 

overestimation to a particular factor, given the quality of the validation data previously 

alluded to. 

A visual analysis of the spatial distribution of the differences between SCYM and AfSBB 

yields also appears to show some geographical clustering, with all districts whose SCYM yield 

was simulated within 10% of AfSBB yield being located in the northeast, aside from one (Map 

8). The two districts with differences between SCYM predicted yield and AfSBB yield of greater 

than 20% (Oberspreewald-Lausitz and Spree-Neisse) are located in the southeast. This could 

mean that the AfSBB results for these districts are the most underestimated of all the districts, 

resulting in larger discrepancies between the estimates. However SCYM could be 

overestimating the yield in these districts due to a parameter in the multiple regression 

model. Analysis reveals that the SCYM-AfSBB difference shows no correlation with either 

seasonal mean temperature or seasonal total precipitation. However, correlations were 

found between both the SCYM simulated yields and DOY of the majority of pixels within each 

district (R = -0.76, p = < 0.01) and between the SCYM-AfSBB difference and the DOY of the 

majority of pixels within each district (R = -0.83, p = < 0.001). This results suggests that the 

clustering of both simulated yields and SCYM-AfSBB difference, is likely to be caused by the 

majority DOY of captured images within each district. The strong negative correlation 

suggests that districts within which the majority of images are captured later in the season, 

are likely to result in simulated yields closer to those detailed in the validation data. Map 10 

shows the distribution of majority DOY at NUTS3 level. When compared with map 8, it is clear 

that similarities exist between the two. If the validation data was to be accepted as true, one 

could therefore conclude that SCYM is overestimating yield in the southeast of Brandenburg 

due to the relatively large proportion of images captured earlier in the season in these 

districts. 
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 Map 9: The distribution of mean growing season temperature (left) (GLDAS-2.1 (Beaudoing, 2016; Rodell et al., 2004)) and 

 total growing season precipitation (right) (PERSIANN-CDR (Ashouri et al., 2014; Sorooshian et al., 2014)) across 

 Brandenburg in 2017. (Basemap: Gorelick et al., 2017) 

 

 

 Map 10: The distribution of majority DOY at district level across Brandenburg 

15.19°C 244mm 17.42°C 362mm 
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4.7 Uncertainties and potential sources of error 

With any research it is necessary to consider the uncertainties within the methods and 

data, and the limitations of the study. Table 9 lists the uncertainties and possible sources of 

error within this research. For a detailed discussion on the uncertainties and potential sources 

of error, see Appendix 13. 

5. Conclusion 

We assessed the feasibility and performance of utilising SCYM for estimating silage 

maize yields in the state of Brandenburg, Germany by simulating yields in 2017. We found 

that whilst it is possible to adapt SCYM for this purpose, the accuracy of the validation data 

available for the region is a hindrance to assessing SCYM’s performance and further research 

is required in this regard before official yields can be declared using this method. 

Accurate yield data is essential for monitoring food supplies and yield data at 

individual field scale allows a thorough assessment of the impact of management practices. 

The ability to estimate yields using remotely sensed data drastically improves the efficiency 

of yield estimation. By testing SCYM in the Brandenburg region, we have proven that the basic 

elements required for SCYM are available for this area and that the use of SCYM to estimate 

yields is feasible. 

Bearing in the mind the sampling method of the currently available yield estimations 

for Brandenburg, it is essential that a new method for yield estimation is established. 

Notwithstanding the limitations previously addressed, our study has identified that SCYM 

could be a helpful tool for estimating yields in Brandenburg, once the issues identified in this 

research have been refined. These include the lack of validation data and the scale of the 

available soil map and gridded weather data in GEE. 

Whilst previous research has concluded that SCYM can be adopted without validation 

data, it would nevertheless be prudent to carry out further research using highly accurate and 

georeferenced yield results for validation. This is considered especially necessary if SCYM is 

to be adopted for the generation of official yield statistics. This would enable a much more 

definitive conclusion on the question as to whether or not SCYM can be universally adopted 

for estimating yields in Brandenburg. If this additional research produces accuracies on par 

with SCYMs performance in other regions, there is no reason why it cannot be used to 
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estimate yields in Brandenburg and indeed throughout Germany, as it is likely to produce 

more accurate yield estimations than those currently available. 
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Table 9: Uncertainties and potential sources of error in the methods and data 

Stage Source Uncertainties Possible solution 

MONICA data inputs DWD 
 
 
 
 
Soil type 
 
Cultivar 

Collection method 
Instrument calibration 
Station selection 
Assumption that climate variation in 
Brandenburg is restricted to these sites 
Collection method 
Scale 
Generic cultivar 

 
 
 
Increase number of stations 
 
 
Finer scale maps 
Include all cultivars 

MONICA LAI and yield outputs Model uncertainty Test alternatives 
Multiple regression Weather variables Effects on crop growth  

Seasonal window 
Test alternatives 
Test alternatives 

Maize field mask InVeKoS 
 
 
 

Farmer error 
Lack of full coverage 
Unrealistic field sizes 
Split overlaps wrongly assigned 

Alternative sources 
 
 
 

    
Image collection Sentinel-2 MSI: MultiSpectral Instrument, 

Level-1C 
Instrument calibration 
Mixed pixels 
TOA reflectance 

 
Procure finer scale images 
Procure BOA 

Cloud mask Google Earth Engine Instrument calibration  
Calculating VI and LAI VI 

Regression equations 
 

Choice of VI 
Spectral band selection 
Model uncertainty 

Test alternatives 
Test alternatives 
Test alternatives 

Yield simulation Weather data 
 
 
 

Collection method 
Instrument calibration 
Interpolation 
Scale 

 
 
 
Procure larger scale data 
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8. Appendix 

8.1 Appendix 1: Detailed information for MONICA crop model 

MONICA has a crop growth temporal resolution of one day and is a 1D point model 

with a variable depth. It does not have a spatial dimension, other than that results are 

interpreted as an area of 1m2. Crop growth is based on the SUCROS model (van Keulen et al., 

1982) and is limited by water and Nitrogen stress (Nendel, 2014). Inputs required for the 

simulation process include management data and climate data (Specka et al., 2015) (Table 2). 

The user is able to specify the required outputs, including input parameters, in order to 

compare simulation outputs derived from a variety of inputs (Nendel, 2014). MONICA has 

been tested and calibrated under various growing conditions and at a variety of locations in 

Germany and throughout Europe (Nendel, 2014). Although primarily used in Germany, where 

it helps support farmer’s and stakeholder’s decision making on management practices, it is 

also used in Brazil, where the results from MONICA simulations are used in modelling land 

cover change and farmer’s behaviour (Nendel, 2014). 

 

8.2 Appendix 2: Detailed information on value selection for the 

MONICA input parameters 

8.2.1 Climate data 

Climate data is used by MONICA to relate crop and soil management data to weather 

and MONICA requires specific climate variables in order to successfully run simulations 

(Appendix 3). We obtained climate data from five Deutscher Wetterdienst (German weather 

service) (DWD) (DWD, 2019a - g) weather stations (Appendix 4 and Map 2). The data was 

prepared in Microsoft Excel and R statistical software (R Core Team, 2018) in the required .csv 

format. Relative humidity data was only available in hourly format. The mean daily relative 

humidity values were calculated in R (Appendix 6). A small number of missing values were 

found within each stations data. MONICA is not able to handle missing values within climate 
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data. To overcome this, we used the na.approx function from the zoo package (Zeileis and 

Grothendieck, 2005) in R to interpolate missing values. 

 

8.2.2 Years 

We chose 01.01.1992 – 31.12.2018 as the range of dates for the climate data used in 

the MONICA crop model simulations, giving a total of 27 full years of climate data. We chose 

these dates as 01.11.1991 was the date on which the last of each of the five chosen weather 

stations became automatic (Appendix 4). 

 

8.2.3 Sowing dates 

The DWD keep a record of phenological dates throughout Germany for the main 

arable crops, including maize. This data includes an assigned weather station ID and the date 

upon which phenological changes take place including sowing dates. We obtained sowing 

date data for stations within Brandenburg and for the years 1992 – 2018 (DWD, 2019h). We 

established that the dates ranged from 15th April to 15th May with a mean and a median of 

26th April. In view of this analysis, we chose the sowing dates of 15th April, 30th April and 

15th May (DOY 105, 120 and 135 in a non-leap year) as input parameters, in order to suitably 

represent the range of sowing dates within the simulations.  

 

8.2.4 Sowing densities 

MONICA does not include the possibility to adjust sowing density parameters. As such 

we were unable to include variations in sowing densities in the MONICA crop model 

simulations. 

 

8.2.5 Fertiliser rates 

Fertiliser use is not officially recorded in Brandenburg. Fertiliser application is 

commonly based on crop demand (Conradt et al., 2016; Gottschalk et al., 2018). The Fertiliser 

Ordinance 2017 states that a threshold of 170 kg N ha-1 should be applied although there is 

no total limit. Instead farmers are expected to plan themselves how much fertiliser they 

require. In 2017 a compulsory fertiliser planning method was introduced. The method takes 
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into account the mean yield from the previous three years and the amount of additional 

fertiliser allowed is dependent on the amount of N remaining in the soil from the previous 

crop (Kuhn, 2017). Furthermore, Balkovic et al. (2013) reported that Nitrogen stress was not 

a limiting factor on maize yields in Germany. We therefore used two fertiliser rates as input 

parameters in the MONICA crop modelling simulations: The maximum threshold of 170 kg N 

ha-1, as it is presumed that the majority of non-organic farmers would aim for this maximum; 

and a slightly lower 150 kg N ha-1 to account for some variability in application. 

 

8.2.6 Soil moisture capacities 

We obtained soil moisture data from the DWD for the period 1992 to 2018 for the five 

weather stations for which climate data was also used (Appendix 4) (DWD, 2019i). We 

established that at the depth at which maize is sown (5-10 cm), soil moisture during the 

sowing period ranged from 27 – 62%. From 0 – 60cm, the range was 66 – 85% (DWD, 2019i). 

Maize requires a starting soil moisture of around 60%. It is unlikely that farmer’s would risk 

sowing until the soil moisture is close to the 60% required. Therefore, we chose two soil 

moisture capacity parameters, one at 58% representing the lower end of the required starting 

capacity but well above the 27% DWD range, and one at 85% representing the higher end of 

the scale.  

 

8.2.7 Silage maize Cultivars 

The range of silage maize cultivars used in Brandenburg is extensive. A list of 

recommended cultivars is produced annually and is dependent on the previous year’s growing 

conditions and crop requirements (Barthelmes & Ebel, 2017). Selecting one or two of these 

cultivars to use as crop model parameters was not considered to be beneficial for this study. 

Instead we used a simple, generic representation of a silage maize cultivar created by ZALF 

and covering the range of cultivars used in Brandenburg (Stella, 2019). 

 

8.2.8 Irrigation 

Irrigation of agricultural fields is rare in Brandenburg with only 2% of agricultural fields 

being irrigated in 2015 representing 24,400 hectares (Gutzler et al., 2015; Luetter et al., 2005; 
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Troegel and Schulz, 2018). Given that so little of the land is irrigated, we chose not to include 

irrigation as an input parameter in the MONICA crop model simulations. 

 

8.2.9 Soil types 

In addition to those parameters used by Lobell et al. (2015), we also chose a selection 

of soil types for inclusion in the simulations. We obtained soil data from the Bundesanstalt 

für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and Natural 

Resources) (BGR) in the form of the ‘Bodenübersichtskarte der Bundesrepublik Deutschland 

1:1.000.000’ (Soil map of Germany) (BGR, 2019a). The data is provided in the form of a 

shapefile. By comparing the soil map of Germany with the silage maize fields in Brandenburg 

(LGB, 2017), we established that 20 different varieties of soil were present within silage maize 

fields in Brandenburg in 2017. We included these soil types in the MONICA crop model 

simulations (See Appendix 5 for a full list of the soil types included).
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8.3 Appendix 3: The required daily climate data inputs per weather station for MONICA crop model 

simulations 

 

 Mean air 

temperature 2m 

above ground 

surface 

Minimum air 

temperature 2m 

above ground 

surface 

Maximum air 

temperature 2m 

above ground 

surface 

Wind speed at 

2m above 

ground surface 

Sunshine hours Total precipitation Relative 

humidity 

Unit °C °C °C m s-1 h mm % 

Column 

header 

tavg tmin tmax wind sunhours precip relhumid 

 

8.4 Appendix 4: DWD weather stations within Brandenburg used for climate data in MONICA crop model 

simulations. 

Station-index Station ID Station name Station height (m) Latitude Longitude Automatic readings 
since 

Readings since 

10291 164 Angermuende 54 53° 01' 13° 59' 01.11.1991 1947 
10496 880 Cottbus 69 51° 47' 14° 19' 01.11.1991 1887 
10393 3015 Lindenberg 112 52° 12' 14° 07' 28.11.1976 1947 
10270 3552 Neuruppin 38 52° 54' 12° 48' 01.01.1976 1961 
10379 3987 Potsdam 81 52° 23' 13° 03' 17.10.1978 1893 
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8.5 Appendix 5: List of soil types found within maize fields of Brandenburg in 2017 (LGB, 2017; BGR, 2019) 

and input into the MONICA crop model simulations. 

Soil 
number 

Soil type Soil 
number 

Soil type Soil 
number 

Soil type 

6 Eutric Histosols 22 Stagnic Gleysols from boulder clay with a loamy to 
sandy cover 

32 Eutric Cambisols / Luvic Arenosols from 
eutrophic sand deposits 

8 Fluvisols / Gleysols from loamy to clayey 
fluviatile sediments 

24 Stagnic Chernozems from boulder clay with a loamy to 
sandy cover 
 

34 Dystric Regosols from dry dystrophic sand 
deposits 
 

11 Fluvisols / Gleysols from rapidly 
alternating sandy to clayey fluviatile 
sediments 

26 Dystric Podzoluvisols / Luvic Arenosols / Dystric 
Cambisols from sandy sediments overlying boulder clay 

46 Haplic Luvisols / Eutric Podzoluvisols / Eutric 
Cambisols from sandy loess overlying sand or 
loam 

12 Gleysols from sandy sediments of the ice-
marginal valleys and lowlands 

27 Calcaric and Umbric Regosols / Luvic Arenosols from 
sandy to loamy end moraine deposits (alternating 
patches) 

57 Spodic Cambisols from acid igneous and 
metamorphic rocks 

17 Haplic Podzols / Cambic Podzols / Gleyic 
Podzols from sandy fluviatile sediments 

28 Spodo-Stagnic Cambisols / Stagnic Podzoluvisols from 
loamy to sandy deposits overlying boulder clay 

70 Sealed areas in larger cities (Urbic Anthrosols) 
 

19 Haplic Luvisols / Eutric Podzoluvisols / 
Stagnic Luvisols from boulder clay 

29 Stagnic and Spodic Gleysols from sandy deposits 
overlying boulder clay 

71 Soils redeposited by man and large open-cast 
mines (Cumulic Anthrosols) 

20 Luvic Chernozems / Haplic Luvisols from 
boulder clay or glacial-lake sediments 

31 Cambic Podzols / Spodic Arenosols from dry dystrophic 
sand deposits 

  



 

55 
 

8.6 Appendix 6: R-code for data preparation and analysis 

The R-code can be found on the accompanying USB drive in the folder named 

‘Accompanying_materials_and_data’. 

 

8.7 Appendix 7: Example of the data structure for multiple 

regression training 

doy LAI Tp_av Psum yield_kg_ha 

221 2.84 14.49187 176.6 7376 

238 0 18.66585 110.3 11960.1 

210 3.18 17.1122 200.4 13345.7 

151 0.31 17.06423 194.5 5035.1 

241 2.79 15.23821 221.4 12367 

241 2.62 17.58049 255.5 11368.3 

201 3.35 16.75528 305.3 9799.6 

259 0 17.47886 137.7 9289.7 

210 2.64 15.98374 234.6 13520.5 

208 2.7 17.4065 327.4 14343.1 

234 2.51 14.80163 153.4 6990.5 

234 3.29 16.38833 331.9 15376.4 

238 2.1 15.81463 262.5 9561.9 

226 2.84 17.36585 218.1 12601.2 

151 0.13 16.13171 158.3 5732.8 

241 1.86 16.63577 149.3 7714.3 

218 3.33 16.81301 172.5 12766.1 

253 2.83 14.49187 176.6 11887.4 

189 2.78 16.79919 323.9 16392 

198 0.38 17.49431 135.1 2365 
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8.8 Appendix 8: Overview of collinearity between variables input into the multiple regression analysis 
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8.9 Appendix 9: The table of coefficients for each DOY 

doy intercept Tp_av Psum LAI Tp_av_LAI Psum_LAI 

151 9087.304 -168.898 12.74513 -7270.02 341.3741 22.50503 

156 6925.622 -113.074 15.8403 -1682.63 108.7366 12.711 

169 6227.785 -163.67 16.18621 150.0423 72.07844 5.092802 

189 8466.866 -438.186 12.48869 265.477 132.0336 1.977225 

194 7428.813 -415.77 11.91709 687.4397 119.0852 1.598133 

198 6692.794 -399.802 11.86066 706.5794 123.91 1.508198 

201 5332.754 -345.475 12.11553 628.0126 135.6106 1.402717 

208 -192.761 -64.7768 13.02734 1309.499 110.8924 0.874593 

210 -1057.55 -24.0444 13.09394 1236.727 120.6996 0.756451 

211 -985.067 -29.8497 13.05549 1195.985 124.8229 0.732398 

216 -2735.94 58.50564 13.13116 1087.442 141.2664 0.56608 

218 -2940.63 62.14543 13.37215 897.852 158.4018 0.381253 

221 -3296.06 74.25052 13.88409 772.1052 175.6182 -0.06765 

226 -1683.66 -20.9252 13.91673 -81.1218 237.1316 -0.39855 

231 476.0122 -144.755 14.10665 -1335.12 320.3559 -0.72766 

234 558.1474 -154.337 14.64876 -1382.3 332.5065 -1.16214 

238 1055.237 -186.993 15.31161 -1649.57 360.3186 -1.67888 

240 1237.692 -201.228 15.89857 -1949.58 384.5107 -1.9906 

241 1637.855 -225.827 16.1419 -2190.27 402.9807 -2.23377 

246 2937.96 -297.918 16.6287 -3073.05 466.8317 -2.68829 

253 3822.426 -342.294 17.2221 -3866.1 529.5404 -3.3107 

258 4326.011 -376.917 18.30282 -4364.84 574.8525 -4.0303 

259 4182.125 -371.882 18.74648 -4291.98 575.0189 -4.33375 

261 5179.764 -422.273 18.38986 -4885.32 612.0512 -4.24843 

264 6606.446 -507.647 18.92623 -5874.31 682.0363 -4.76297 

271 6203.254 -479.421 20.11668 -6101.19 711.7902 -5.57136 

281 7768.961 -555.974 20.82603 -7534.81 821.9727 -6.59627 
 

8.10 Appendix 10: GEE code 

The GEE-code can be found on the accompanying USB drive in the folder named 

‘Accompanying_materials_and_data’.  
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8.11 Appendix 11: The multiple regression coefficients for each DOY 

 

 

8.12 Appendix 12: A detailed review of the amongst DOY coefficients 

Appendix 11 shows how the coefficients differ between DOY models. Between DOY 

216 and 226 higher growing season mean temperatures positively affects yield (b). Increases 

in temperature in the early and late growing season negatively affect yield (b). Increases in 

precipitation positively affect yield throughout the growing season (c). Increases in LAI at the 

very beginning of the season (DOY 151 and 156) negatively affect yield (d). During the peak 

growth period (DOY 169 to 221), increases in LAI positively affect yield (d). This reverses later 

in the season (DOY 226 to 281) when increases in LAI negatively affect yield (d). With regards 

to the variable interactions, the effect of temperature on yield increases with increasing LAI, 

(a) (b) 

(c) 

(d) 

(e) (f) 
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positively affecting yields (e). In the early season, the effect of precipitation on yield increases 

with increasing LAI, positively affecting yields (f). In the late season, the effect of precipitation 

on yield decreases with increasing LAI, negatively affecting yields. 

A detailed look at the regression models for each DOY reveals that the effects of each 

input variable on yield varies across the growing season. We found that between DOY 216 

and 221, increases in temperature positively affect yield and the effect of temperature on 

yield increases with increasing LAI throughout the entire growing season (b). This is to be 

expected as maize requires warmer temperatures and a minimum temperature above 10°C 

in which to grow (Ramirez-cabral et al., (2017). However the effect of increasing temperatures 

positively affecting yield is restricted to a very small window within the growing season. 

Whilst the possibility of heat stress is increased in the very early growing season, one would 

nevertheless expect that the window within which temperature increases positively affect 

yield to be larger. Whilst high temperatures do occur in Brandenburg with maximum daytime 

temperatures often exceeding the 25 to 33°C optimal range for maize growth (Ramirez-cabral 

et al., 2017), the strength of this negative impact is surprising and may require further 

investigation in future research.  

With regards to precipitation (c), we found that an increase positively affects yield 

throughout the growing season. This is to be expected, as Brandenburg is a relatively dry 

region and maize is susceptible to drought, meaning that crops are more likely to be affected 

by water stress than by extreme wet conditions (Ramirez-cabral et al., 2017). 

 

8.13 Appendix 13: A detailed explanation of the limitations and 

potential sources of error 

The DWD data used in the MONICA crop model were collected by automatic 

instruments at locations across Brandenburg. The collection procedure is standardised and 

conforms to World Health Organisation guidelines. Nevertheless, changes in instruments, 

instrument height, quality control procedures, personnel and observation schedules may 

have affected the accuracy and comparability of the data. All data was utilised, as MONICA 

requires daily observation data (DWDa-I, 2019). Furthermore, the data is collected at point 

locations. The MONICA crop model simulations provide details on silage maize crop growth 

based on the climate at these locations. Whilst this method captures some of the climate 
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variability in Brandenburg, it does not capture all of it. This could be improved by increasing 

the number of stations and subsequently the variation but any improvement may be offset 

by additional time and computational requirements. 

The soil types were selected based on the coarse scale (1:1,000,000) map produced 

by BGR in 1995 and by overlaying the silage maize fields. The BGR map was produced by 

compiling older existing maps (BGR, 2019a) but we could not establish how these existing 

maps were compiled. This poses a number of issues. Firstly, the accuracy of maps produced 

at this scale is limited. It is likely that soil type variation exist within regions declared as one 

particular soil type.  Secondly, changes in soil type are likely to have occurred since the dates 

on which the original soil maps were produced. Thirdly, without knowing how the original 

maps were produced, it is not possible to judge their accuracy. Furthermore, when overlaying 

the maize fields mask in order to extract relevant soil types, scale factors produce 

uncertainties. At the time the modelling for this research was conducted, this was the most 

comprehensive soil map available for the Brandenburg region. Since then, a new soil map at 

a scale of 1:200 has been made available (BGR, 2019b). For future adaptations of the SCYM 

model in the Brandenburg region, this new soil map should be employed in order to establish 

soil types to be included in the MONICA crop model simulations. 

The silage maize cultivar used in the MONICA crop model simulations was a general 

cultivar composed of average parameters found within silage maize cultivars utilised in 

Brandenburg (Stella, 2019). Using a generic cultivar results in the loss of detail of specific 

parameters within cultivars which may reduce or increase crop growth. Thus, the variability 

of the crop growth is reduced. Increasing the number of cultivars used may improve results, 

but this improvement must also be offset by additional time and computational 

requirements. 

Whilst MONICA has been tested and calibrated on a variety of studies (Nendel, 2014), 

all models come with uncertainties and one can ever be certain that a model represents the 

true reality. Errors may exist in the structure, in the equations used within the model, in the 

model parameters and in the model inputs previously referred to (Wallach & Thorburn, 2017). 

Testing SCYM in Brandenburg by utilising alternative crop modelling software, may produce 

different daily LAI and yield results. Using a combination of crop models may improve results, 

although Jin et al. (2017) found that the benefits of this approach are minimal. 
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The seasonal weather variables input into the multiple regression were calculated 

from the DWD data. As such the same uncertainties exist in this data as those previously 

alluded to when discussing the DWD data. The weather variables were chosen due to their 

influence on crop growth, however there is no restriction on the type or number of weather 

variables that can be added to the multiple regression. Utilising alternative or additional 

weather variables or adjusting the start and end dates for calculating these variables, may 

result in different results. Alternative combinations could be tested in future research in order 

to establish whether these improve results. 

The maize field mask was created from InVeKoS data. The crop data is provided by the 

farmers who are responsible for completing an online annual survey. The farmers are 

presented with a map displaying their fields as detailed in the Amtliches 

Liegenschaftskatasterinformationssystem (Official real estate cadastral information system) 

and input the crops that are present in each of their fields for the period 1st June to 15th July. 

They are asked to check and adjust the fields according to the reality ((Bundesamts für Justiz, 

2015). Whilst systems are in place to ensure the accuracy of the information provided, the 

system leaves room for error, as the possibility of unintentionally inputting false information 

exists. Furthermore, overlaps were found to exist between fields. The overlaps were removed 

during pre-processing and randomly re-assigned to one of the original fields. Bearing in mind 

the above, it is possible that fields containing silage maize were omitted from the field mask, 

that fields not containing maize were included and that the area of some silage maize fields 

does not match the reality. An alternative method would be to create a field mask from a crop 

classification using remote sensing techniques, such as the random forest classification 

adopted by Azzari et al. (2017) and  Jin et al. (2019). However it is questionable whether this 

approach would produce a more accurate field mask. 

The collection of satellite imagery is subject to both geometric and radiometric 

uncertainties. The Sentinel-2 satellites are calibrated and validated to reduce uncertainties, 

and targets and thresholds are set internally in order to ensure that the highest possible 

accuracy is maintained. In terms of current levels of uncertainty, Level-1C products are 

measured at less than 11 m for geometric uncertainty and at less than 5% for radiometric 

uncertainty (Clerc, 2019). Thus, it is possible that radiometric measurements obtained at one 

location refer to a point up to 11m away and that measured reflectance is 5% above or below 

that measured by the sensor. 
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The Sentinel-2 bands used to calculate VI in the research have a spatial scale of 20m. 

Therefore each pixel covers an area of 400m2. This introduces the problem of mixed pixels. 

For example, a pixel covering a field perimeter may consist of 50% crops, 30% trees and 20% 

road and thus produce a spectral reflectance representing this mixture of land cover. This will 

differ from the reflectance from a pixel representing 100% crops and thus is likely to 

negatively affect the correlation with validation data. This effect could be reduced by 

acquiring images with a higher spatial resolution or by selecting alternative bands to calculate 

VI (see section 2.1.5.2.2) as correlation tends to increase with higher resolution and could 

improve explanatory power (Burke & Lobell, 2017). 

Sentinel-2 level 1C data is calibrated for top of atmosphere (TOA) reflectance (ESA, 

2015). TOA reflectance is reflectance which has been corrected for variance in solar zenith 

angles at image acquisition and for irradiance from variance in spectral bands. However it 

does not account for absorption in the atmosphere or for atmospheric scattering. For this, 

Bottom of Atmosphere (surface) (BOA) data is required. Research suggests that using BOA 

data improves the accuracy of VI (Jin et al., 2019; Shelestov et al., 2017; Vuolo et al., 2017). 

At the time modelling was conducted for this research, BOA Sentinel-2 data (Level 2A) was 

not available in GEE, nor was an appropriate algorithm for converting TOA to BOA (Jin et al., 

2019). However, this data recently became available in GEE (Google Developers, 2019b). Thus, 

future research should take advantage of this development, as it is likely to improve model 

accuracy. 

The cloud mask algorithm utilises the existing Sentinel-2 bands to create an additional 

band for each pixel identifying the presence of Dense or Cirrus clouds (ESA, 2019). Despite 

the seemingly robust method of cloud detection, the algorithm is subject to the same 

geometric and radiometric uncertainties as the satellite imagery. Due to the seasonal aspect 

of image collection, it is highly unlikely that any snow or ice detection errors have occurred. 

However, errors cannot be ruled out. 

The selection processes for the VI and spectral bands required to convert reflected 

radiance into LAI has been described in detail in section 2.2.5.2.2. The selection of the VIs and 

bands for this research is considered appropriate. However it is possible that selecting 

alternative VIs may produce more accurate results. Furthermore, there seems to be some 

confusion within the research community, with regard to the appropriate bands to use when 

calculating such VIs (See section 2.2.5.2.2). Selecting alternative bands for the VIs may 
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produce more accurate results, particularly if bands with a 10m spatial resolution were 

selected. The equations for the conversion of VI to LAI were obtained by training regression 

models using data acquired from experiments in the field (Nguy-robertson et al., 2012). This 

model was therefore subject to the same uncertainty found in all such experiments, such as 

instrument calibration. Whilst the model used was the best fit given the circumstances, 

alternative models based on alternative experiments may result in a different regression 

equation for the conversion of VI to LAI in maize. 

The gridded weather data within GEE used to calculate seasonal weather variables is 

also subject to uncertainties. The GLDAS-2.1 data uses a combination of ground based and 

satellite observations to model temperature with data obtained from a number of sources 

(Beaudoing, 2016; Rodell et al., 2004). The PERSIANN-CDR data (Ashouri et al., 2014; 

Sorooshian et al., 2014) is derived from satellite data merged from two sources. Both of these 

datasets are therefore subject to errors in data collection and satellite observations previously 

alluded to. Furthermore, the data is provided at a relatively coarse scale with each grid cell 

equal to approximately 478 km2 (0.25° = 27.82 x 17.17 km at 52° N). As such, it fails to capture 

more localised variations in temperature and precipitation, which may affect yield output. 

However, at the time of modelling, these were the finest scale weather datasets covering the 

study area and required dates available in GEE. If finer scale datasets become available in GEE, 

it would be beneficial to utilise these in future SCYM modelling in the Brandenburg region. 

Finally, within all these processes there is always an element of human error, 

particularly when data observations are carried out manually and during the transfer of 

results between datasets. 
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