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Knowing if a forest disturbance is caused by timber harvest or a natural event is crucial for carbon cycle assess-
ments, econometric analyses of timber harvesting, and other research questions. However, while remote sensing
of forest disturbance in general is very well developed, discerning between different types of forest disturbances
remains challenging. In this work, we developed an algorithm to separate windfall disturbance from clear-cut
harvesting using Landsat data. The method first extracts training data primarily based on Tasseled Cap trans-
formed bands and histogram thresholds with minimal user input. We then used a support-vector machine clas-
sifier to separate disturbed areas into ‘windfall’ and ‘clear-cut harvests’.We tested our algorithm in the temperate
forest zone of European Russia and the southern boreal forest zone of the United States. The forest-cover change
classifications were highly accurate (~90%) and windfall classification accuracies were greater than 75% in both
study areas. Accuracies were generally higher for larger disturbance patches. At the Russia study site about 60% of
all disturbances were caused by windfall, versus 40% at the U.S. study site. Given the similar levels of accuracy in
both locations and the ease of application, the algorithm has the potential to fill a research gap in mapping wind
disturbance using Landsat data in both temperate and boreal forests that are subject to frequent wind events.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Forests play an important role in the global carbon cycle and the pro-
vision of ecosystem services. Information on where and to what extent
forest disturbances occur globally is thus a crucial necessity (Achard
et al., 2002; Bonan, 2008). Remote sensing can provide accurate and
timely information regarding forest disturbance in many ecoregions at
scales ranging from local to global and at many different temporal reso-
lutions (Achard et al., 2006; Baumann et al., 2012; Hansen & DeFries,
2004; Hansen, Stehman, & Potapov, 2010; Healey, Cohen, Yang, &
Krankina, 2005; Huang et al., 2010; Potapov, Hansen, Stehman,
Pittman, & Turubanova, 2009; Potapov et al., 2012; Zhu, Woodcock, &
Olofsson, 2012). Data from Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) instruments have been
used formany of these studies because of (1) the favorable combination
of spatial, spectral and temporal resolution, (2) the free availability of
the data (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012) and,
(3) the long-term data record, which continues now thanks to the
Landsat Data Continuity Mission (LDCM, Irons, Dwyer, & Barsi, 2012).

Inmost forest disturbancemapping studies that utilize Landsat data,
the derived change products only identify areas of ‘forest disturbance’,
but do not discriminate among different types of disturbances
(e.g., Cohen, Fiorella, Gray, Helmer, & Anderson, 1998; Coppin & Bauer,
1 608 262 9922.
).
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1994; Ozdogan, in press). This has already been identified as a gap in
remote sensing based forest disturbance studies (e.g., Hicke et al., 2012;
Kasischke et al., 2013; Masek et al., 2011; Vogelmann, Tolk, & Zhu,
2009). The lack of attribution to the type of disturbance oftenmakes it dif-
ficult to interpret forest disturbancemaps, especially when these data are
used as inputs to carbon budget assessments or econometric analyses. For
example, many studies that seek to understand timber harvest trends are
forced to equate forest disturbance with harvesting (e.g., Chomitz & Gray,
1996; Wendland et al., 2011). As a result, natural disturbance is errone-
ously included in harvest estimates, which can lead to overestimation of
harvested areas and dampen the significance of actual drivers of forest
harvest. Inability to separate forest harvest from natural disturbances
also affects studies that assess the effectiveness of protected areas in
preventing logging (e.g., Hayes, 2006; Andam, Ferraro, Pfaff, Sanchez-
Azofeifa, & Robalino, 2008; Wendland, Baumann, Lewis, Sieber, &
Radeloff, in review). From the ecological point of view, information on
the type of forest disturbance is important for biomass estimations
and for the prediction of post-disturbance succession (Kasischke et al.,
2013; Scheller & Mladenoff, 2004). For example, more living biomass
remains in place following a windfall event, compared to a clear-cut
harvest, which can hinder the establishment of early successional
species (Peterson, 2000; Webb & Scanga, 2001; Rich, Frelich, Reich, &
Bauer, 2010; Scheller & Mladenoff, 2004).

The most common natural disturbances affecting forests are fire, in-
sect defoliation and windfall (FAO, 2005; FAO, 2010). While remote
sensing of fire-related disturbances and insect defoliation has received
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considerable attention in the past (e.g., French et al., 2008; Garcia-Haro,
Gilabert, & Melia, 2001; Patterson & Yool, 1998; Pereira & Setzer, 1993;
Roder, Hill, Duguy, Alloza, & Vallejo, 2008; Schroeder,Wulder, Healey, &
Moisen, 2011; Townsend et al., 2012; Van Wagtendonk, Root, & Key,
2004), only a handful of studies have focused on identifying and
mapping windfall disturbances. In general, the existing studies can be
categorized into two themes. The first category focuses on monitoring
the impacts of tropical storms on forest structure using multispectral
imagery or radar data (e.g. Cheung, Pan, Gu, & Wang, 2013; Negron-
Juarez, Baker, Zeng, Henkel, & Chambers, 2010; Nelson, Kapos, Adams,
Wilson, & Braun, 1994; Ramsey, Rangoonwala, Middleton, & Lu, 2009;
Ramsey, Werle, Lu, Rangoonwala, & Suzuoki, 2009; Wang & Xu, 2010).
The second area of focus is severe storm (including tornados) damage
on forests of continental interiors, which are characterized by smaller
affected areas but high intensity disturbances, such as the Boundary
Waters Blowdown in the Greater Border Lakes Region (USA) in 1999
(Rich et al., 2010; Wolter et al., 2012). However, while these studies
were successful in mapping the damage caused by each particular
storm, they did not include developing a specialized, and potentially
universal, method to separate wind-related change from other
disturbances.

The Disturbance Index (DI, Healey et al., 2005) is an example of a
universal method. The algorithm has been developed to detect areas
of forest disturbance, and has been tested in a wide range of forest
biomes including the Pacific Northwest (USA), the St. Petersburg and
other locations in Russia, South-Sudan and Uganda and the contermi-
nous United States (Healey et al., 2005; Masek et al., 2008; He et al.,
2011; Gorsevski, Kasischke, Dempewolf, Loboda, & Grossmann, 2012;
Sieber et al., 2013). One reason for the success of the DI is its use of
the Tasseled Cap transformation that convert Landsat bands into bright-
ness’, ‘greenness’, and ‘wetness’ measures to describe the variations in
soil background reflectance, vegetation vigor, and vegetation senes-
cence, respectively (Crist & Kauth, 1986; Kauth & Thomas, 1976).
The success of the Tasseled Cap bands in the DI across different study
regions suggests that a windfall classification algorithm based on the
same standardized bands might be successful as well across different
regions throughout the world.

Our goal here was to develop an algorithm to distinguish windfall
disturbance from forest harvests with Landsat data in two different
locations. Our specific objectives were to:

1 create a map of forest and forest disturbance using established
methods from the literature,

2 develop an algorithm to separate the areas of forest-disturbance into
windfall disturbance and clear-cut harvests,

3 test our algorithm in two study regions, (1) the temperate zone of
European Russia and (2) the southern boreal forest zone of the
United States.

2. Methods

2.1. Study area

Our first study site is located in the temperate zone of European
Russia (Landsat Path/Row 177/019, Fig. 1 bottom right). Temperate co-
niferous, broadleaf, and mixed forests dominate the landscape with
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) being the
most abundant coniferous species. Major deciduous species include
aspen (Populus tremula), gray alder (Alnus incana), and birch (Betula
pendula). Commercial harvests are widespread in the region, because
the Russian forestry sector is growing and western forest companies
are increasing their investments in mills to exploit Russia's vast timber
resources (Mutanen & Toppinen, 2007). Besides commercial harvests,
the region experiences frequent natural disturbance events. Specifically,
the study region experienced two storms that occurred in October 2009
and July 2010 (Koroleva & Ershov, 2012), which were studied and
mapped in detail by the Russian Forest Health Center (Krylov,
Malahova, & V., 2012).

The second study site is located in the southern boreal forests in
northern Minnesota (USA) (Landsat Path/Row 025/028, Fig. 1, bottom
left). The region is characterized by a mixture of glacial lakes and wet-
lands. Forest species in the region include early successional species,
such as jack pine (Pinus banksiana), red pine (Pinus resinosa), or aspen
(Populus tremuloides), as well as late successional species like white
cedar (Thuja occidentalis) or balsam fir (Abies balsamea) (Frelich &
Reich, 1995; Rich et al., 2010). In 1999, the region experienced a large
infrequent wind disturbances event, which is referred as the Boundary
Waters Blowdown (or the Boundary Waters Canadian Derecho). The
storm occurred between July 4th and 5th 1999 and lasted 22 h. It
traveled over 2000 km at an average pace of around 95 km/h, and
with wind gusts of over 160 km/h. The storm caused over 1500 km2

of considerable forest damage (Price & Murphy, 2002), and has been a
research subject in the past (Rich et al., 2010; Wolter et al., 2012).

2.2. Image pre-processing

At both locationswe analyzed Landsat data from the year before and
the year after the windfall event. Our temporal frames were 1998–2000
for the U.S. site and 2009–2011 for the Russia site. Imagery for both
study sites were pre-processed by converting digital numbers into
surface reflectance using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm (Masek et al., 2006). Cloud-
free images were available for both time points at the U.S. site, but not
for the Russia site. Therefore,we selected imageswith the least amounts
of clouds (hereafter called the base-image) and gap-filled them using
other Landsat scenes from the same growing season (i.e., late May to
August; 2009 and 2011, respectively, Table 1). Gap-filling was accom-
plished by first masking clouds and cloud shadows in each image
using FMask (Zhu &Woodcock, 2012), applying conservative threshold
values to ensure that a maximum of clouds and cloud shadows were
detected. Afterwards, we filled the gaps of our base-image using all
other images from the respective growing season. We ensured that im-
ages located at the edge of a growing season (i.e., lateMay)were chosen
last to fill gaps in the base-image. We thus minimized potential influ-
ences of a late spring onset that sometimes can lead to class confusions
in forest/non-forest classifications. The result was a nearly cloud-free
image composite for both time points (2009 and 2011).

2.3. Forest/non-forest classification

For both study sites, we classified the pre-disturbance image (1998
for theU.S. site, and 2009 for theRussia site) into ‘forest’ and ‘non-forest’
using a training data set generated automatically using the dark object
approach (Huang et al., 2008). More specifically, we searched for the
peak within a local histogram of Landsat's red band (Band 3). In the ab-
sence of non-vegetated dark objects, such aswater or dark soil, pixels to
the left of the peak can be considered forest pixels (Huang et al., 2008).
We removed non-vegetated dark objects by applying a consistency
check using the globally available Moderate-Resolution Imaging
Spectroradiometer (MODIS) vegetation continuous field product (VCF,
Hansen et al., 2006) with a threshold value of 40%. Dark pixels passing
this consistency check were then collected within a group of confident
forest samples and used to calculate the Integrated Forestness Index
(IFI):

IFI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NB

XNB
i¼1

bpi−bi
SDi

 !2
vuut ð1Þ

where bi and SDi are the mean and standard deviation of the candidate
forest pixels within that image for band i, bpi is the spectral value for
pixel p in band i, and NB is the number of bands (Huang et al., 2008).



Fig. 1. Locations where the windfall classification method was tested. Study site 1 is located in the temperate zone of European Russia; study site 2 is located in the Greater Border Lake
Region in northeast Minnesota (USA).
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The index is an integrated Z-score depicting a pixel's probability of not
being forest. Low IFI values indicate a higher likelihood of being forested
areas and high IFI values a higher likelihood of other land cover classes
(Huang et al., 2010). Using this information, we delineated “non-forest”
pixels by applying a threshold. Huang et al. (2008) provides a more
comprehensive explanation on how to choose and modify this
Table 1
Image acquisition dates for the Landsat imagery used in this analysis. The images for
footprint Path/Row 177/019 are ranked in the order they were used to create the image
composite.

Path/Row 177/019 Path/Row 026/027

Year in
analysis

Acquisition
date

Sensor Year in
analysis

Acquisition
date

Sensor

2009 2009-07-11 TM5 1998 1998-09-16 TM5
2009-08-23 ETM+
2009-07-30 TM5
2009-06-12 TM5
2009-05-19 TM5

2011 2011-06-02 TM5 2000 2000-07-03 TM5
2011-06-26 ETM+
2011-07-12 ETM+
2011-07-20 TM5
2011-05-25 ETM+
2011-08-05 TM5
threshold to capture pixels with low IFI values that are non-forest
areas, such as dark green agricultural fields. We also collected less
pure pixels at class boundaries for each category by adjusting the IFI
threshold for a pixel being assigned to either forest or non-forest de-
pending on whether their neighboring pixel was previously labeled as
forest or non-forest (Huang et al., 2008).

We used these training data in a Support Vector Machine (SVM)
supervised classification. SVM are non-parametric classification algo-
rithms that fit a linear hyperplane between two classes in a multi-
dimensional space (Foody & Mathur, 2004a). Our strategy to collect
training samples of both ‘pure’ forest pixels and ‘less pure’ forest pixels
(as well as non-forest pixels) favored the application of SVM, because
the linear separation between classes is strongly dependent on pixels
along class boundaries (Foody & Mathur, 2004b). SVM use kernel func-
tions to find the best fitting hyperplane, which require setting a kernel
parameter for the kernel width ( ) and a regulation parameter (C). We
chose the best parameter combination by comparing models that used
a wide range of parameter combination and chose the parameters
from the best fitting model (Janz, van der Linden, Waske, & Hostert,
2007).

2.4. Forest disturbance detection

We mapped forest disturbance in both locations using the Distur-
bance Index. The DI is a linear combination of normalized Tasseled-
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Cap bands. The idea behind the index is that disturbance sites exhibit
higher brightness, and lower greenness and wetness values compared
to undisturbed forests. The Disturbance Index is calculated as:

DI ¼ Br− Gr þWrð Þ; ð2Þ

where Br,Gr,Wr are the Tasseled Cap bands, standardized around the
scene'smean forest value. Positive values generally indicate disturbance
areas (Healey et al., 2005). The advantage of the Disturbance Index is
that it only requires setting a threshold, which is typically study region
dependent. For the Russia site, we visually compared the results of mul-
tiple thresholds against sample sites of stand-replacing disturbance as
well as windfall sites and identified DI = 3.0 as providing the most
accurate disturbance map. The same type of assessment for the U.S.
site revealed that DI = 2.5 identified disturbed areas best. In the final
step we combined the initial forest/non-forest map with the areas of
forest disturbance and created a change-map for 2009–2011 and
1998–2000, respectively. We then applied a majority filter and defined
a minimum mapping unit of 5 pixels (roughly equivalent to 0.5 ha) to
eliminate isolated pixels that likely represented misclassifications.

2.5. Detecting windfall disturbance

Our windfall detection method was based on the assumption that
only two forms of disturbances occurred on the landscape: windfall
and harvests. To extract training data for each disturbance type, we vi-
sually examined the Landsat imagery to determine how wind-related
disturbance may be spectrally different from clear-cut harvests. Based
on these observations we postulated that, compared to harvests, a
wind-related disturbance site would have:

(a) Lower Tasseled Cap brightness values: The Tasseled Cap brightness
is a measure of the soil proportion in the signal and sensitive to
the abundance of shadows (Kauth & Thomas, 1976). After a re-
cent clear-cut harvest soil is often exposed and shadows are
rare, leading to high brightness values. In contrast, after a wind-
fall event, biomass often remains, reducing soil reflectance and
maintaining shadows. This would result in lower brightness
values for windfall disturbance than clear-cut harvests.

(b) Higher Tasseled Cap wetness values: The Tasseled Cap wetness
provides information about the moisture content of a site
(Cohen & Spies, 1992; Jin & Sader, 2005). Major over- and under-
story removal, typical for a clear-cut harvest, strongly reduces
Tasseled Cap wetness (Ballard, 2000; Cohen & Goward, 2004;
Healey et al., 2005). Hence, a windfall disturbance will have on
average a higher Tasseled Cap wetness value than a clear-cut
harvest.

(c) Lower short-wave infrared (SWIR) reflectance (Landsat band 5):
Similar to the Tasseled Capwetness index, TM band 5 is sensitive
to the amount of water in vegetation, but through an inverse
relationship (Schroeder et al., 2011). On average, a windfall
disturbance site would be expected to have lower SWIR then a
clear-cut harvest due largely to more shadows in a windfall site.

Using normalized pixel values around a mean of zero following a
standard Z-transformation, a histogram of all disturbed pixels will ex-
hibit three main ‘areas’. For example, in the case of band-5 reflectance,
the locations of importance in the histogram are 1) the center, in
which the spectral characteristics of windfall disturbance and clear
cuts are essentially the same; 2) the left side of the histogram, which
is dominated by ‘windfall’ pixels; and 3) the right side of the histogram,
which is dominated by ‘clear-cut harvest’ pixels (Fig. 2). The nature of
a normal distribution makes it convenient to target these areas.
Specifically, we targeted areas to the left (‘windfall’) and to the right
(‘clear-cut’) of one standard deviation from the mean, and extracted
pixels located in these areas as training data for the ‘windfall’ and
‘clear-cut harvest’ categories. We then used the SVM to classify the
disturbed areas, using the six multi-spectral bands from Landsat and
the same parameter-search method as for the initial forest/non-forest
classification.

In doing so, we were able to add information to our forest-change
maps by attributing the cause of the forest disturbance. We postulated
that a given cluster of disturbed pixels would have all been disturbed
due the same cause, which especially in the case of windfall sites was
confirmed during the validation process. Accordingly, we extracted all
disturbance-labeled areas from our forest change map and converted
these into vector-based polygons. These polygons were overlaid with
our windfall classification map. Within each disturbance polygon, we
then counted the number of pixels of each class (i.e., ‘windfall’ vs.
‘clear-cut harvest’) and assigned the final class label for the polygon
based on the majority of the pixels in it.

2.6. Accuracy assessment

We assessed the accuracy of our methodology by evaluating (a) the
accuracy of our forest-changemap, and (b) the accuracy of windfall dis-
turbance detection. For the forest-cover change maps, we randomly
sampled 100 points from each of the three classes (i.e., ‘constant forest’,
‘constant other’, and ‘disturbed’), and labeled each pointmanually using
the Landsat composites and, where available, high-resolution imagery
in Google-Earth. We then summarized the results in an error matrix,
and calculated overall accuracy and the kappa statistics of the overall
classification, as well as user's and producer's accuracy for each class
(Congalton, 1991; Foody, 2002). To account for the possible sampling
bias in the accuracy assessment, we area-weighted our classification ac-
curacies (Card, 1982) and adjusted the area estimates of our categories
(Stehman, 2012).

To estimate the performance of our proposed method in separating
windfall from clear-cut harvests, we evaluated all disturbance sites to
see whether or not they were assigned correctly to their expected
class by visually inspecting the Landsat imagery and high-resolution
Quickbird data. This analysis was supplemented with the following ex-
ternal datasets: for the Russia site, we had access to a hand-digitized
validation dataset from 2010 from collaborators in the region. For the
U.S. site,we used (a) a previously published Landsat-based classification
of the region, which highlighted areas of windfall, fire, and logging
disturbance (Wolter et al., 2012), and (b) a disturbance severity map
created from IKONOS data (Rich et al., 2010). Both ancillary datasets
did not cover our entire study region, but only areas in the northern
half of the analyzed footprint (Wolter et al., 2012) and in the northwest
of our study area (~121 km2, Rich et al., 2010). We again generated an
error-matrix to evaluate the accuracy of the classification of the poly-
gons into ‘windfall’ and ‘clear-cut harvest’, and calculated the same
accuracy measures.

3. Results

The forest change maps had high accuracies (Overall Accuracy
90.96% and Kappa value of 0.91 for the Russia changemap; overall accu-
racy 89.33% and Kappa value of 0.84 for the U.S. site). User's and
producer's accuracies were higher for the stable classes compared to
the disturbance class and higher at the Russia site compared to the
U.S. site (Table 2). The accuracy for the windfall classification was
77.5% for the Russia site and 76.4% for the U.S. site. In both cases, com-
mission errors for ‘windfall’ category were slightly higher than those
for ‘clear-cut harvest’ (Table 3).

At the Russia site, 68.5% of the landscape (over 23,000 km2) was
classified as forest in 2009. By 2011, 475 km2 of the forested area expe-
rienced a form of disturbance, corresponding to an annual change rate
of about 1%. Of the 475 km2 of affected forest area, over 300 km2 (or
64%) were caused by two large windfall events in 2009 and 2010. Over-
all, we analyzed 7,028 disturbance polygons in Russia, 4,625 (or 65.8%)
of which were characterized as ‘windfall’.



Fig. 2. Schematic representation training data collection strategy for thewindfall classification. The data in the histogram represent values of the validation data of the Russian study site for
the band-5 reflectance.
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For the U.S. site, results were similar: in 1998, over 76% of the inves-
tigated area was forested (nearly 13,000 km2). By 2000, 395 km2 were
disturbed, corresponding to an annual disturbance rate of 1.5%. Roughly
171 km2, or 43%, of the affected area was damaged bywind. Overall, we
analyzed 5,977 unique disturbance polygons at the U.S. site, of which
3,735 (or 63%) were caused by a large storm in 1999 (Fig. 3).

The point cloud featured two clusters, each of which contained ob-
servations of one disturbance typewith very little ambiguity (i.e., ‘wind-
fall’ or ‘clear-cut harvest’, Fig. 4). Between the two study sites, the point
cloud of the U.S. site exhibited a larger difference between the two
disturbance types.

The classification accuracy of the disturbance polygons also varied
by size. At the Russian site (Fig. 5 top row) the lowest overall accuracy
(just over 75%) was associated with the smallest disturbance polygons
and then increased to an average of about 85% for disturbances of
about 10 ha in size. After that size, the low number of polygons in
each 0.5 ha-bin caused the data points containing to high variances to
estimate a clear trend (Fig. 5a). Forwindfall sites only, small disturbance
sites were more accurately detected than larger ones. The accuracy for
windfall sites dropped from on average 95% for small patches to 80%
for patches of about 8 ha in size. Again, for patch sizes larger than 8 ha
the number of polygons became too small to estimate a clear trend
(Fig. 5b). For clear-cut patches the classification accuracy was lowest
(~55%) for the smallest patches close to our minimum mapping unit
of 0.5 ha, but registered greater than 80% for patches of about 8 ha. For
patches larger than 8 ha no clear trend was observable due to the low
number of large disturbance patches (Fig. 5c). At the U.S. study site
the general patterns of accuracy were very similar to the Russia site
(Fig. 5d, e, f): For both disturbance types together, we found an increase
in the classification accuracy from 70% for patches of 0.5 ha to over 95%
for patches of about 7.5 ha in size (Fig. 5d). For windfall disturbances,
accuracies were high throughout the entire range of disturbance
Table 2
Area-weighted classification accuracies for our Landsat-based change-maps. Presented are the
Forest (F)’, ‘Constant Non-Forest (NF)’ and ‘Disturbance (D)’.

Landsat Path/Row Overall accuracy
[%]

Kappa User's accur

F

177019 90.96 0.91 91.00
026027 89.33 0.84 88.00
patches: they were highest for the smallest and the largest windfalls
(N95%) but slightly lower for windfalls of about 7–8 ha in size (~95%,
Fig. 5e). However, here the trend was consistent across the entire
range of patch sizes. For the clear-cut sites, the least accurate detection
occurred for patches that were close to our minimum mapping unit of
0.5 ha. From there, the detection accuracy greatly improved with
increasing patch size, yielding accuracies at about 80% for patches of
about 5 ha in size (Fig. 5f).

At the Russia site we also noticed that the first major windfall event
was classified at a higher accuracy compared to the second one (Fig. 6).
Evaluating the spectral characteristics of these areas,we found that their
band 5 reflectance values and Tasseled Cap brightness values were
above zero while their Tasseled Cap wetness values were below zero.

4. Discussion

We developed a novel algorithm to separate windfall disturbance
from harvested areas based on Landsat data and tested the method
successfully in two different locations — one in the temperate zone of
European Russia and one in the southern boreal forests of the United
States. The generation of the forest disturbance map applied previously
publishedmethods to detect forest disturbances. Using this disturbance
map, we then developed and applied a rule set that determined wheth-
er the disturbance was caused by windfall or a harvest event. To our
knowledge this is the first study that developed a method specifically
for the purpose of separating windfall disturbance from clear-cut
harvesting and tested its robustness in multiple study regions.

Our results showed that in both study sites the separation between
windfall and clear-cut disturbance was possible in over 75% of the dis-
turbed area. Given the small number of studies that simultaneously
classify windfall and clear-cut harvests using Landsat data, only a limit-
ed comparison to previous work can be made. Compared to the studies
overall accuracies, kappa, user's and producer's accuracies for the three classes ‘Constant

acy [%] Producer's accuracy [%]

NF D F NF D

91.00 88.00 95.40 84.07 66.28
88.00 92.00 95.88 77.14 33.35



Table 3
Accuracymeasures for the separation of the disturbance polygons into ‘windfall’ (W) and
‘clear-cut harvest’ (CC). Presented are the overall accuracy, the kappa statistics as well as
user's and producer's accuracy.

Landsat
Path/Row

Overall
accuracy [%]

Kappa User's
accuracy [%]

Producer's
accuracy [%]

W CC W CC

177019 77.52 0.55 71.87 87.34 90.80 64.11
026027 76.39 0.55 62.95 98.80 98.86 61.54
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of fire disturbance and clear-cut harvests (e.g., Pereira & Setzer, 1993;
Roder et al., 2008; Schroeder et al., 2011), our accuracies were generally
lower. For example, Schroeder et al. (2011) achieved classification
accuracies greater than 90%, while our results suggest a little over
75% success rate when detecting windfall. We believe that two major
factors contribute to these differences. The first factor is related to the
difference in the methods of the two studies. Contrary to our study
Schroeder et al. (2011) gathered training data with considerable user
input. In contrast, our algorithm did not require any user intervention
during the training process. Compared to classifications that gather
training datamanually, automatedmethods often yield lower classifica-
tion accuracies. As such, the automation inherent in our algorithm is
probably more prone to errors but comes with the advantage of not
requiringmanually collected training data. The second reason is related
to forest management practices, particularly partial harvests. Partial
harvests typically remove mature trees from the canopy while leaving
younger trees uncut (Wilson & Sader, 2002), a management practice
that is increasingly common particularly at the U.S. site. Partial harvests
are known to impact Landsat's SWIR band (Olsson, 1994), a band that
was highly important also in detecting windfall in our study. As such,
it is possible that confusions between windfall and selective harvest
Fig. 3. Classification results for the Russia site (left) and the U.S. site (right). For both study lo
(177019A and 026027A), and areas primarily characterized by clear-cut harvest (177019B and
lowered the overall detection accuracy, specifically by increasing the
commission errors in our ‘windfall’ class. This highlights the need for a
thorough understanding of harvesting practices before attributing
disturbance types.

Our algorithm complements other efforts to process Landsat data
with little or no user input (Healey et al., 2005; Huang et al., 2010). In
the present study, we integrated two basic concepts that had not been
previously combined to produce a forest-cover change map: the dark-
object concept (Huang et al., 2008), and the Disturbance Index concept
(Healey et al., 2005). Our disturbance attribution step was then based
on the disturbance areas in the change map. We therefore stress that
the attribution step, itself, can be combined with any other algorithm
that detects forest disturbance using Landsat images.

Overall, the combination of the selected variables proved to be suit-
able in separating windfall disturbance from clear-cuts. Previous work
on forest change detection suggests that both Landsat SWIR reflectance
(band 5) and Tasseled Cap wetness values (a contrast of SWIR with the
visible and near infrared bands) contain similar levels of information
(Chen & Vierling, 2006; Cohen & Goward, 2004; Healey et al., 2005;
Peddle, Hall, & LeDrew, 1999; Schroeder et al., 2011). Similarly, SWIR
and the Tasseled Cap brightness often show a high degree of correlation
(Cohen, Maiersperger, Gower, & Turner, 2003). However, initial tests
using all permutations of the three bands during the training data
collection suggested that the highest classification accuracy was
achieved by using all three bands as opposed to using one band indi-
vidually or in combination with another band. This might suggest
that although correlated, each band contributes a unique source of in-
formation about windfall and harvest sites, so we suggest that even
correlated information can be useful for improving classification
accuracies.

Our results also suggest that the accuracy of the disturbance type
classification increased with the size of a disturbed area. This size-
cations, examples are presented of areas characterized primarily by windfall disturbance
026027B).



Fig. 4. Validation of the training data to classify disturbance areas into ‘windfall’ and ‘clear-cut harvest’ in the spectral feature space in which they were generated.
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related classification accuracy issue is potentially an artifact due to two
aspects of our study design. First, mixed pixels along edges affect a small
disturbance sitemore strongly than a larger site. Second, the generaliza-
tion of disturbance sites at the polygon-level, posterior to the classifica-
tion, may have introduced errors. Our decision to use the majority rule
prior to delineating disturbance polygons might have affected particu-
larly long and narrow disturbed patches. Despite these shortcomings,
Fig. 5. Proportion of correctly classified disturbance patches by patch size for the two classes, ‘w
Russian site (footprint 177019), the bottom row the U.S. site (footprint 026027). The data prese
with 0.09 ha increments in patch size (i.e., increments of one Landsat pixel). The point represen
bars represent the standard deviation. The colors represent the number of polygons in every bin
the web version of this article.)
our algorithm represents a valuable contribution to forest disturbance
mapping. Overall, we achieved mean classification accuracies of over
75%, and even higher values for larger disturbance patches. This
suggests that for the vast majority of the disturbance area (83.3% at
the Russia site, and 87.5% at the U.S. site), the classification results iden-
tified the main events that took place on the ground, i.e., widespread
windfalls, correctly.
indfall’ and ‘clear-cut harvest’, and the two classes combined. The top row represents the
nted are binned data with a bin width of 0.5 ha. Every bin was subdivided into six groups
t themean proportion correctly classified polygons across sub-groups in each bin, the error
. (For interpretation of the references to color in this figure legend, the reader is referred to



Fig. 6. Misclassified disturbance site. Classification results suggest that the disturbance is caused by harvest. Validation data reveal that the site is caused by windfall.
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A number of uncertainties also remain. First, the windfall detection
algorithm requires knowledge about a windfall event in the region of
interest. Second, we were not able to test how the presence of fire or
insect defoliation would affect our results. We can only speculate
that a step-wise approach and the addition of fire-specific indices
such as the Normalized Burn Ratio (NBR) could help isolate fire-
affected pixel, which then could be used to sample training data.
Third, we did not distinguish between different levels of windfall se-
verity, which will likely impact the spectral signal (Rich et al., 2010).
Fourth, the image composites at the Russian site might have intro-
duced errors across the landscapes because of the different phenolog-
ical stages. Though, the critical image dates (e.g., the May imagery)
only covered a small proportion of the landscape and acquired climate
records indicated that these errors were assumingly small. Fifth, we
did not test how varying the threshold (i.e., we used one standard
deviation away from the mean) of collecting windfall and clear-cut
training data in the histogram would have affected our results,
but we suspect that the threshold is sensitive to the proportion of
‘windfall’ and ‘clear-cut’ disturbance in the classification. Finally, at
the Russia site, a second major windfall was largely missed by our al-
gorithms (Fig. 6). While not having complete evidence due to missing
ancillary information, two reasons potentially contribute to this omis-
sion. First, the 2010 storm event may have been a much stronger one
compared to the 2009 event, causing more biomass to be removed
from the site, making it spectrally more similar to a clear-cut harvest.
The second, and in our opinion more likely, reason is salvage logging
following the windfall. During salvage logging the damaged trees are
removed from the site, rendering it spectrally similar to a clear-cut
harvest. As such, the post-storm treatment of a site is a major factor
impacting the correct classification of windfall disturbance using
satellite imagery.

Knowing what caused a forest disturbance is valuable information
for a variety of research questions that utilize forest disturbance maps.
While the literature on remote sensing of fire- and insect-related distur-
bance is fairly rich, work on identifying windfall disturbance has not
received much attention. Here, we developed a novel algorithm to gen-
erate training data and classify disturbance areas into ‘windfall’ and
‘clear-cut harvest’ disturbances. Our methodology requires minimal
user input, and can be immediately applied to other Landsat based
disturbance maps. The proposed method resulted in good classification
accuracies, was effective in separating windfall and clear-cut harvest,
and maintained similar accuracies across two different study regions.
As with any other form of classification, the increased level of categori-
cal information produced as a result of this work is of great value, espe-
cially for research that require information about changes in forest
areas, such as econometric analyses that assess drivers of timber harvest
and carbon management.
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