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A B S T R A C T

Tropical dry forests and savannas provide important ecosystem services and harbor high biodiversity, yet are
globally under pressure from land-use change. Mapping changes in the condition of dry forests and savannas is
therefore critical. This can be challenging given that these ecosystems are characterized by continuous gradients
of tree and shrub cover, resulting in considerable structural complexity. We developed a novel approach to map,
separately, continuous fields of tree cover and shrub cover across the South American Gran Chaco
(1,100,000 km2), making full use of the Landsat-8 optical and Sentinel-1 synthetic aperture radar (SAR) image
archives. We gathered a large training dataset digitized from very-high resolution imagery and used a gradient-
boosting framework to model continuous fields of tree cover and shrub cover at 30-m resolution. Our regression
models had high to moderate predictive power (85.5% for tree cover, and 68.5% for shrub cover) and resulted in
reliable tree and shrub cover maps (mean squared error of 4.4% and 6.4% for tree- and shrub cover respectively).
Models jointly using optical and SAR imagery performed substantially better than models using single-sensor
imagery, and model predictors differed strongly in some regions, especially in areas of dense vegetation cover.
Mapping tree and shrub cover separately allowed identifying distinct vegetation formations, with shrub-domi-
nated systems mainly in the very dry Chaco, woodlands with large trees mainly in the dry Chaco, and tree-
dominated savannas in the wet Chaco. Our tree and shrub cover layers also revealed considerable edge effects in
terms of woody cover away from agricultural fields (edge effects extending about 2 km), smallholder ranches
(about 1.2 km), and roads and railways (about 1.4 and 0.9 km, respectively). Our analyses highlight both the
substantial footprint of land-use on remaining natural vegetation in the Chaco, and the potential of multi-sen-
soral approaches to monitor forest degradation. More broadly, our approach shows that mapping canopy
structure and distinct layers of woody vegetation in dry forest and savannas is possible across large areas, and
highlights the value of the growing Landsat and Sentinel archives for doing so.

1. Introduction

Tropical dry forests and savannas cover about 20% of the Earth's
surface, account for about 30% of the primary production of all ter-
restrial vegetation (Grace et al., 2006), harbor high biodiversity (Mayle
et al., 2007), and provide many important ecosystem services (Abreu
et al., 2017; Lehmann, 2010; Murphy et al., 2016; Parr et al., 2014).
However, dry forests and savannas are under increasing pressure from
agricultural expansion and intensification (Espirito-Santos et al., 2016;
Kaya et al., 2018; Klink and Machado, 2005), leading to major carbon

emissions (Chen et al., 2018; González-Roglich and Swenson, 2016;
Lucas et al., 2011), and biodiversity losses (Ratter et al., 1997). Mon-
itoring the condition of dry forest and savannas is therefore important.

This is challenging given the nature of these ecosystems, char-
acterized by continuous gradients of woody and grass cover (House
et al., 2003; Sankaran et al., 2008). These ecosystems can contain a
wide variety of canopy types, including woodlands dominated by
smaller trees and shrubs (House et al., 2003), woodlands with inter-
spersed larger trees, and savannas dominated by grassland and scat-
tered palm trees (Bucher, 1982), or shrublands (Archer et al., 1995;
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Asner et al., 2003; Roques et al., 2001). This complexity in vegetation
types arises from heterogeneous soils, climate conditions and, im-
portantly, land use (Morgan et al., 2007; Polley et al., 1997). For ex-
ample, fire suppression in savannas often results in increasing shrub
cover and declining grassy vegetation (Archibald et al., 2005; Moreira,
2000). Similarly, logging and firewood collection lead to a loss of large
trees (Gillespie et al., 2000), and grazing by cattle or goats might reduce
or increase shrub cover (Stern et al., 2002). Monitoring gradients of
woody vegetation, and stratifying woody cover into tree and shrub
components, is therefore important for better understanding dry forest
and savanna structure, composition, and functioning.

Remote sensing is a key technology to do so, and regression-based
approaches to derive continuous fields of woody vegetation (Hansen
et al., 2003; Hayes et al., 2008; Pengra et al., 2015) are particularly
promising. Approaches to map fractions of woody cover were originally
introduced to overcome limitations due to relative coarse resolution of
sensors such as the Advanced Very High Resolution Radiometer
(AVHRR) (Defries et al., 2000; Hansen and DeFries, 2004; Hansen et al.,
2003) or the Moderate Resolution Image Spectroradiometer (MODIS)
(Hansen et al., 2006; Hansen et al., 2003). While this has increased our
understanding of the global distribution of woody cover substantially,
broad-scale products are typically too coarse to provide reliable esti-
mates for dry forests and savannas. With the opening of the Landsat
archives (Wulder et al., 2012) mapping continuous fields of woody
cover across local (Gessner et al., 2013; Johansen and Phinn, 2006),
regional (Higginbottom et al., 2018; Schwieder et al., 2016), and con-
tinental extents (Hansen et al., 2011; Hansen et al., 2013) has become
possible, representing a step change in our understanding of woody
cover gradients. Yet, current broad-scale products still have low accu-
racy in dry forests and savannas (Brandt et al., 2016; Hansen et al.,
2013; Sexton et al., 2013; Tian et al., 2016).

Existing approaches also typically do not allow separating between
tree and shrub cover which would be important to assess dry forest and
savanna complexity. Tree and shrub cover maps are potentially highly
useful for land-use and conservation planning in savannas and dry
forests, given that these systems are lost rapidly in many places, yet
remain often unmapped (de Carvalho and Mustin, 2017). Mapping tree
and shrub cover separately would also allow assessing the role of land
use in shaping natural vegetation, moving beyond assessing full con-
version only towards better capturing processes of woodland degrada-
tion. For example, grazing impacts are often highest close to a farm but
decrease with larger distances (Macchi and Grau, 2012), and extractive
activities such as logging are often highest close to infrastructure such
as roads or railways (Chomitz and Gray, 1995). The spatial footprint of
such land-use processes, however, is often unknown.

A promising avenue for stratifying woody cover into tree and shrub
constituents is to combine Landsat imagery with synthetic aperture
radar (SAR) imagery, as these data are highly complementary (Joshi
et al., 2016). For example, optical data are powerful for mapping large
trees, particularly when the phenology of vegetation is considered
(Melaas et al., 2016), but have limited capabilities in identifying scat-
tered woody vegetation. Contrary, SAR signals respond well to the
density and size of scattering elements and are therefore potentially
powerful to map sparser woody vegetation (Durigan and Ratter, 2006;
Mitchard et al., 2011; Ryan et al., 2012; Santos et al., 2002). A number
of studies have attempted to map savannas and dry forests by com-
bining these data, for example in the Cerrado (Carreiras et al., 2017), in
the South Africa-Mozambique border region (Naidoo et al., 2016), or in
Bolivia (Reiche et al., 2018). Yet, these studies either mapped small
regions only, classified savannas and dry forests into broad categories,
or did not distinguish between trees and shrubs. A new generation of
sensors now provides potentials for an improved mapping of dry forest
and savanna vegetation. Landsat 8, operational since 2013, provides
global coverage of high-resolution optical data at unprecedented
radiometric resolution (Irons et al., 2012; Roy et al., 2014). Likewise,
the Sentinel-1 sensors (since 2014) provide consistent C-band SAR data

at high temporal and spatial resolution. Combining these data should
provide tremendous potential for dry forest and savanna mapping, but
to our knowledge, no study has attempted to do so across larger areas.

We focused on the Gran Chaco, a 1.1million km2 dry forest region
in South America characterized by strong gradients in woody vegeta-
tion cover. The Gran Chaco contains dense and tall dry forests, palm
savannas, open grasslands, and shrublands (Bucher, 1982), and is also a
global hotspot of land-use change, with many land-use practices af-
fecting the extent and composition of woody vegetation in the land-
scape (Grau et al., 2008; le Polain de Waroux et al., 2017). Yet, spatial
patterns of woody cover and composition remain unclear, or are only
available for smaller study regions (Cabido et al., 2018). Our over-
arching goal was thus to develop a methodology to use Landsat-8 and
Sentinel-1 data to characterize woody vegetation across the Chaco.
Specifically, our objectives were:

1. to map continuous fields of tree and shrub cover across the entire
Chaco,

2. to assess whether the joint use of Landsat-8 and Sentinel-1 data
improves the mapping of these woody cover components,

3. to map major vegetation types of dry forests and savannas across the
Chaco, and

4. to assess the relationship of tree and shrub cover and a suite of
environmental and socio-economic variables.

2. Methods

2.1. Study area

Our study area encompassed the entire Gran Chaco in South,
stretching across Argentina, Bolivia and Paraguay, as well as into Brazil
(Fig. 1, inlet). The Chaco is characterized by a marked dry season from
May to September, with mean monthly temperatures of up to 29 °C, and
a rainfall gradient between 1200mm and 450mm in the center, which
results in substantially vegetation heterogeneity across the Chaco. In
the west, medium-tall xerophyllous forests are dominant, with trees
about 12m high and sometimes reaching 18m (Bucher, 1982). The
eastern Chaco represents the wettest part, with widespread wetlands.
The dominant vegetation types are wet savannas consisting of a mosaic
of dense or open woodland patches, intermixed with grasslands. The
woodland patches are occupied by subtropical semi-deciduous forests,
with some trees reaching 25–30m (Bucher, 1982), and gallery forest,
mainly along the Paraguay and Parana rivers. Two semi-deciduous
(schinopsis balansae and astronium balansae) and one evergreen species
(aspidosperma quebracho blanco) are dominant here. The central Chaco
is an ecotone between the eastern and the western Chaco, and domi-
nated by xerophyllous subtropical forests with quebrachos (Schinopsis
quebrachos colorados, S. lorentzii, and Aspidosperma quebracho), but also
with grasslands and savannas dominated by wire grasses (Elionorus
muticus) (Bucher, 1982; Cabrera, 1976). The driest section is the very
dry Chaco in the south. Here, large trees are almost absent and grass-
land-shrub savannas (mostly spartina argentinensis and Elionurus mu-
ticus) with scattered low trees (mainly proposes algarrobilla) dominate
(Bucher, 1982).

The Chaco is also a global hotspot of deforestation (Baumann et al.,
2017b; Graesser et al., 2015; Kuemmerle et al., 2017), with various
land-use actors affecting tree- and shrub-cover differently. In-
dustrialized agribusinesses are now common in the Chaco, producing
cattle and soybean (Baumann et al., 2016; Piquer-Rodríguez et al.,
2018). In the case of cropping, no woody vegetation (i.e., no trees and
shrubs) remains on the fields, and massive pesticide applications and
run-away agricultural fires affect the surrounding woody vegetation.
Pastures are traditionally also cleared completely of all trees and
shrubs, but long-term grazing results in shrub encroachment. In recent
years, so-called silvipastures are increasingly common, as the Argentine
Ley de Proteccion Ambiental de Bosques Nativos (2007) requires
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ranchers to retain a proportion of the woody cover on pastures (Ceddia
and Zepharovich, 2017); typically the large trees (~5%–30% canopy
cover), while smaller trees and shrubs are removed (Rejžek et al.,
2017). In addition, charcoal production and logging focusses on re-
moving large and valuable trees, dominantly using selective cutting
leaving woodlands dominated by smaller trees and shrubs (Rueda et al.,
2015). Lastly, smallholders, so-called puesteros, use woodlands for
cattle, sheep and goat grazing, and for extracting fuel and construction
wood. This results in a modified canopy structure with lower tree cover
and sometimes higher shrub cover around smallholder farms (Grau
et al., 2008; Macchi et al., 2013).

2.2. Compositing of Landsat and Sentinel-1 data

We based our analysis on image composite metrics, which we
generated using all available Landsat 8 and Sentinel-1 images. Image
composite metrics are gap-free mosaics based on all available images, in
case of optical data cloud-free observations, within a user-defined study
region and period (Griffiths et al., 2013; Potapov et al., 2015; Roy et al.,
2010). Compared to traditional, single-image approaches they are ad-
vantageous for at least two reasons. On one hand, in the case of optical
data, using many or all available images minimizes limitations due to
clouds or cloud shadows. On the other hand, image composite metrics
represent aggregated measures of the reflectance and the structure of
the surface (e.g., mean reflectance or backscatter over a year) and
therefore are able to capture phenology and climate effects on vegeta-
tion (Bleyhl et al., 2017; Griffiths et al., 2014). To make use of these
advantages, we downloaded all available images (1994 Landsat images
and 1067 Sentinel-1 available images) for the Chaco for the year 2015.

Landsat imagery came from the United States Geological Survey
(USGS, 2015) in terrain-corrected quality (L1T), as surface reflectance
values generated though LEDAPS (Masek et al., 2006), and with cloud
masks based on Fmask (Zhu and Woodcock, 2012) and therefore did
not require further pre-processing. Contrary, the Sentinel-1 data re-
quired substantial pre-processing for which we employed the python-
implementation snappy of the Sentinel Application Platform (SNAP).
We downloaded all Sentinel-1 imagery as dual-polarized (i.e., vertical-

vertical (VV) and vertical-horizontal (VH)) data in Interferometric
Wide-Swath Mode (IW) and Ground-Range Detected High Resolution
(GRDH) at a spatial resolution of 10m. First, we applied an orbit file
and a radiometric calibration. Second, we performed a Range-Doppler
Terrain-Correction, using 30m Shuttle Radar Topography Mission
(SRTM) data (Ottinger et al., 2017). Last, we matched the 10m Sen-
tinel-1 resolution to our 30m Landsat grid by averaging all Sentinel-1
pixels within a Landsat grid cell, thus reducing the SAR inherent speckle
without applying an individual speckle filter.

After pre-processing, we calculated image composite metrics, pur-
posefully choosing metrics least affected by outliers (e.g., due to errors
in cloud masks or due to differing image availability). For the Landsat
imagery, we calculated the per-band mean, median and 75th percentile
reflectance. For the Sentinel-1 imagery, we calculated the per-polar-
ization mean, median and 75th percentile σ0−values. We stacked the
metrics into three input datasets for our analyses: (1) Landsat only
consisting of 18 bands (three metrics for six spectral bands); (2)
Sentinel-1 only consisting of six bands (three metrics for two polariza-
tions); and (3) Landsat-Sentinel-1 combined consisting of 24 bands.

2.3. Mapping fractional tree- and shrub cover using Gradient Boosting
Regression (GBR)

We used our image composite metrics together with an extensive
training dataset within a Gradient Boosting Regression (GBR) frame-
work to derive continuous fields of tree cover and shrub cover. Tree
cover here refers to large trees with a height of at least 10m height.
Contrary, shrub cover refers to larger and smaller shrubs but also
smaller trees with a height of< 10m, and we made this distinction
based on existing field inventory plots from our own previous work
(Gasparri et al., 2008).

Our training dataset consisted of a stratified random sample of
hand-digitized proportions of tree and shrub cover per-pixel based on
high-resolution imagery in Google Earth. To derive a representative
sample of different degrees of tree and shrub cover, we relied on a
previous map (Baumann et al., 2017a), which contains six major land-
cover types. We sampled 100 sampling plots of 900m2 (i.e., one

Fig. 1. Mapping results for fractional tree cover (TC)
and fractional shrub cover (SC). We masked out all
areas without any vegetation (e.g., salt planes,
croplands, urban areas) and set the respective TC and
SC values to zero, based on a previous land-cover
classification (Baumann et al., 2017a). The inset map
shows the location of the Gran Chaco in South
America.
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Landsat pixel) with a minimum distance of 900m (i.e., 30 Landsat
pixels) into each class, except for dense forest and palm savannas, into
which we sampled 200 plots given the importance of these categories
for our study. Hence, our sample consisted of a total of 1000 in-
dependent, randomly selected plots. For 356 sample plots (35.6%),
high-resolution imagery in Google Earth (i.e., Quickbird resolution of

0.65m or finer) was available and we discarded all other plots. We
digitized tree and shrub cover in a window of 3× 3 Landsat pixels (i.e.,
900m×900m=8100m2) to account for possible misregistration of
the Google Earth imagery (Potere, 2008), and calculated average area
fractions that we assigned to the central pixel (i.e., our sample plot).

We then used these per-pixel fractions as input for a GBR model to
derive continuous fields of tree and shrub cover. GBR is a machine
learning algorithm which makes predictions based on ensembles of
individual decision trees (Elith et al., 2008). Contrary to random forests
or other bagging algorithms, GBR grows new trees based on the errors
(or residuals) of the previously fitted trees (Friedman, 2001). Each tree
thereby has a weight, and the final GBR model is then the average of all
weighted trees. GBR are able to handle heterogeneous data efficiently,
to identify non-linear responses, and to account for feature interactions
(Ridgeway, 2007). We followed Hastie et al. (2009) to tune five para-
meters: (1) the learning rate that shrinks the contribution of each tree;
(2) the number of estimators that sets the number of boosting stages; (3)
the maximum depth that limits the number of nodes in a tree; (4) the
minimum number of observations at a leaf node; and (5) the number of
features required for a tree to be considered when looking for the best
split. We systematically tested a wide range of parameter combinations
by fitting a GBR model for each parameter combination and evaluating
these models using 10-fold cross-validation. Because our ground data
are independent from each other (random sampling scheme, minimum
distance of 900m between plots) this results in a reliable estimation of

Fig. 2. Cross-validated model results of the Gradient Boosting Regression (GBR) when using Sentinel-1 data (left column) or Landsat 8 data (middle column) only,
and using Sentinel-1 and Landsat 8 data together (right column). Plotted are the shrub cover from Google Earth (i.e., the digitized values) vs. modelled values for
fractional tree cover (top row) and fractional shrub cover (bottom row).

Table 1
Mean and standard deviation of tree-and shrub-cover across the Chaco and its
sub regions (i.e., wet, dry and very dry Chaco), depending on the satellite
imagery used.

Region Sensor(s) Mean tree cover
[%]

Mean shrub cover [%]

Chaco Landsat 8+ Sentinel-1 10.6 (8.9) 6.5 (4.4)
Landsat 8 9.3 (12.1) 5.8 (6.0)
Sentinel-1 8.3 (6.85) 6.0 (6.2)

Wet Chaco Landsat 8+ Sentinel-1 9.9 (8.3) 4.8 (3.2)
Landsat 8 9.48 (12.83) 4.64 (4.95)
Sentinel-1 7.29 (6.1) 4.94 (5.36)

Dry Chaco Landsat 8+ Sentinel-1 11.7 (9.5) 7.8 (4.6)
Landsat 8 10.55 (12.46) 6.83 (6.57)
Sentinel-1 9.66 (7.11) 7.32 (6.47)

Very dry Chaco Landsat 8+ Sentinel-1 6.5 (5.5) 4.2 (3.6)
Landsat 8 3.41 (5.71) 3.34 (3.93)
Sentinel-1 3.7 (4.32) 2.07 (3.67)
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model fit and accuracy. We then selected the parameter combination
with the lowest mean-squared error (MSE), and re-fitted this model
using all available training data. This means our error estimates are a
conservative measure of our final model (and map accuracy), which
was based on all training data (Pedregosa et al., 2011). Lastly, we
plotted the observed vs. predicted values of tree and shrub cover, and
calculated Pearson's correlation coefficient. We repeated this procedure
for each of our three input datasets (i.e., Landsat, Sentinel-1, and
combination thereof).

We then predicted tree and shrub cover across the entire Chaco by
applying the respective model to the entire input dataset. Once tree and
shrub cover maps were available for each input dataset, we calculating

difference maps for all combinations (i.e., tree and shrub cover for
Landsat/Sentinel vs. Landsat-only; Landsat/Sentinel vs. Sentinel-only;
Landsat-only vs. Sentinel-only). We summarized mean and standard
deviation differences of tree and shrub cover for the dry, very dry and
wet Chaco for each map.

2.4. Spatial patterns of tree and shrub cover in the Chaco

To analyze spatial patterns of tree and shrub across the Chaco
landscape, we first calculated the global bivariate to quantify the spatial
autocorrelation between tree and shrub cover (Anselin et al., 2006).
Second, we calculated the bivariate local indicator of spatial association

Fig. 3. Differences in tree and shrub cover between the three input datasets. Positive differences indicate higher estimates in the first-named data product (e.g.,
Landsat 8+ Sentinel-1 in the upper left map) whereas negative differences indicate higher values in the second-named product (e.g., Landsat 8 in that case). The
boxplots represent the distribution of values across the Chaco.
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(bLISA) that quantifies the association of tree and shrub cover in a
spatially explicit way (Anselin et al., 2006). Specifically, bLISA tests if
the value of a variable in a given location is more similar to the average
of a second variable in neighboring locations compared to the case
under spatial randomness (Anselin, 1995). In our case, the bLISA metric
resulted in spatial clusters of tree and shrub cover (i.e., high tree cover
surrounded by high shrub cover, or low tree cover surrounded by low
shrub cover) or in spatial outliers (i.e., high tree cover surrounded by
low shrub cover, or low tree cover surrounded by high shrub cover). We
identified statistically significant spatial clusters or outliers using a
Monto-Carlo randomization with 999 permutations and a significance
level of p= 0.05 (Anselin et al., 2006).

We also evaluated our woody vegetation components in relation to
environmental and land-use factors that might influence tree and shrub
cover in the Chaco. In terms of environmental variables, we compared
tree and shrub cover to a cation exchange capacity (CEC) layer from the
ISRIC soil database (ISRIC - World Soil Information, 2013), in which
higher CEC indicates higher soil fertility. Likewise, we compared our
tree and shrub cover values to the Hargreaves' Climatic Moisture Deficit
(CMD) from the ClimateSA dataset (Hamann et al., 2013). For both
variables, we compared tree and shrub cover to them at 10,000 ran-
domly sampled points across our study region.

In terms of land-use variables, we assessed changes in tree and shrub
cover in relation to the Euclidian distance to croplands (Baumann et al.,
2017a). Second, we assessed tree and shrub cover changes away from
homesteads (puestos), using a puesto dataset for northern Argentina,
where they are widespread (Grau et al., 2008). Third, we assessed tree
and shrub cover away from roads and railways. For each of these
variables, we calculated 100-m buffers up to a distance of 6 km, ran-
domly sampled 50 points in each buffer zone (10 points only in the two
smallest buffers) and calculated mean tree and shrub cover per buffer
zone.

3. Results

Our GBR models showed high performance. The goodness-of-fit of
our best model was higher for tree cover (R2 of 0.85, MSE of 4%)
compared to shrub cover (R2 of 0.68, MSE of 6%, Fig. 4). Generally, our
models underestimated both tree and shrub cover, but particularly
shrub cover, in the mid-value range (between 20% and 60% tree and

shrub cover, respectively, Fig. 2). The GBR models showed the highest
performances when using data from Landsat and Sentinel-1 together
compared to Landsat only (R2 values of 0.72 and 0.61 and MSE of 8%
and 7% for tree and shrub cover, respectively) and Sentinel-1 only (R2

values of 0.31 and 0.41, MSE of 21% and 12% for tree and shrub cover,
respectively, Fig. 4).

Tree and shrub cover varied across our study region. According to
our best models (i.e., the ones using Landsat 8 and Sentinel-1 data),
mean (M) tree and shrub cover across the Chaco were 10.6% (standard
deviation (SD): 8.9%) and 6.5% (SD: 4.4%), and maximum (Max) tree
and shrub cover were 89.0% and 46.2%, respectively. Tree cover was
highest in the dry Chaco (M: 11.7%, SD: 9.5%, Max: 88%), followed by
the wet Chaco (M: 9.9%, SD: 8.3%, Max: 88.5%), and was lowest in the
very dry Chaco (M: 6.5%, SD: 5.5%, Max: 89%). Likewise, shrub cover
was highest in the dry Chaco (M: 7.8%, SD: 4.6%, Max: 46.2%) fol-
lowed by the wet Chaco (M: 4.8%, SD: 3.2%, Max: 35%) and the very
dry Chaco (M: 4.2%, SD: 3.6%, Max: 26.25%) (Table 1).

Differences among the tree and shrub cover map were generally
relatively little, as highlighted by the distribution of differences among
the different map products (Table 1). Differences were similar for tree
cover (around 9% on average) and shrub cover, though slightly smaller
for the latter (around 6%, Table 1). Projecting these models to the
entire revealed some strong artefacts in the form of striping (as a result
of image availability, Fig. 3). These artefacts were most visible for shrub
cover and in areas where Sentinel-1 data were scarce (e.g., in the center
of our study area, Fig. 3). High differences also occurred in ecotone
areas to the Yungas biome (e.g., north-west of our study area) and for
wetland areas (e.g. north-east of our study region).

The global bivariate Moran's I between tree and shrub cover was
0.36, indicating a moderate spatial association (i.e., clustering) between
tree and shrub cover. Local autocorrelation between tree and shrub
cover was statistically significant in 73.5% of the study area, and the
resulting spatial clusters/outliers occupied 23.5% (High tree cover and
high shrub cover), 35% (low tree cover and low shrub cover), 10% (low
tree cover and high shrub cover), and 5% (high tree cover and low
shrub cover) of the study area (Fig. 5). Areas with high tree cover and
high shrub cover are likely those forests of particularly conservation
value (e.g., less degraded, highest carbon stocks). When comparing
these areas to the protected area network of the Chaco, we found that
only 12% of these areas fall inside these protected areas.

Relating our tree and shrub cover to environmental and land-use
factors revealed distinct patterns. In case of environmental variables,
we found that tree and shrub cover values were similar within similar
conditions, but sharply decreased outside this domain. For example, in
case of cation exchange capacity, we found constant values for tree and
shrub cover between 15 and 21 cmolc/kg, but a sharp decline in tree
and shrub cover for values below 15 and higher 21 cmolc/kg (Fig. 6A).
In case of the CMD, we found that tree cover decreased with increasing
CMD, but was higher at very high CMD values (Fig. 6B).

Comparing tree and shrub cover values to land-use factors, revealed
that each factor influenced tree and shrub cover values distinctly. Tree
and shrub cover were both lowest (~1%) in the immediate surround-
ings of puestos, and increased away from them up until a certain dis-
tance at which they leveled off (Fig. 6D). For shrub cover this distance
was at around ~700m to the puesto (10%), compared to ~1.2 km for
tree cover (15%). For croplands, the pattern was similar: tree cover
leveled off after ~2 km (tree cover of 15%), whereas for shrub cover
this point was reached earlier (i.e., ~600m, shrub cover of ~10%,
Fig. 6C). In case of distance to roads and railways, tree cover was lower
closer to roads and railways (10–12% for roads, and < 10% for rail-
ways, respectively), and then increased, but we did not find the same
pattern for shrub cover (Fig. 6E, F).

4. Discussion

Land use exerts strong pressure on the world's tropical dry forests

Fig. 4. Overall model performances of the Gradient Boosting Regression for
fractional tree cover and shrub cover.
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and savannas globally, most importantly through agricultural expan-
sion, grazing, logging, and fire management, all of which affect woody
vegetation structure and composition. Because these changes in turn
impact on biodiversity and ecosystem services, monitoring woody ve-
getation change in these systems is therefore important, yet challenging
because of the spectral complexity that gradients in tree, shrub, and
grass cover create. Here, we demonstrate how jointly using of Landsat 8
and Sentinel-1 data in a Gradient Boosting framework allows to sepa-
rate continuous fields of tree and shrub cover across the 1.1 million km2

Gran Chaco in South America. Our study provides the following key
insights. First, differentiating canopy layers in savannas and dry forests
based on remote sensing is possible and allows for a better character-
ization of woody cover structure and composition than categorical in-
formation. Second, using Landsat-8 and Sentinel-1 data together im-
proves the mapping of tree- and shrub-cover compared to using data
from one of the two sensors only, but also makes the mapping more
prone to artefacts from differences in image availability. Third, our tree
and shrub cover layers effectively captured a range of land-use effects
on woody cover. Fourth, these effects seem to impact the structure of
woody vegetation more strongly than environmental factors. More
broadly, our results show that realizing the potentials of the growing
Landsat and Sentinel archives allows for a better understanding of dry
forest and savanna structure, composition, and functioning.

Generally, our models performed well and provided reliable, and
separate, estimates of tree and shrub cover, and our work goes thus
substantially beyond prior studies mapping fractional woody cover in
the Chaco. Woody cover has been mapped there as part of global
(Hansen et al., 2013; Sexton et al., 2013), or continental-scale studies
(Pengra et al., 2015), but our study is the first to rely on localized
training data, fine-tuned for the ecotones that characterize the Chaco.
We know of only one fine-scale study, though focusing on a small re-
gion at the southern edge of our study area (González-Roglich and
Swenson, 2016). Our work is also substantially broader in scope
(1.1 million km2 compared to 50,000 km2 in that study). Finally, all
existing work has lumped woody cover into one category, while we
separated continuous fields of tree and shrub cover at the ecoregional

scale, to our knowledge for the first time for any dry forest and savanna
region.

Our modeling results also showed that jointly using Landsat 8 and
Sentinel-1 data improves woody vegetation mapping. This confirms
prior work (e.g., Naidoo et al. (2016), but see also Joshi et al. (2016) for
a review), but our results add interesting insights. For example, the use
of Landsat data (alone or together with Sentinel-1) yielded generally
better models for tree cover than for shrub cover. Contrary, when only
using Sentinel-1 data, shrub cover showed better model performances
than tree cover (Fig. 4). Several factors explain this: first, larger trees in
the Chaco have a stronger phenological cycle compared to shrubs
(Marco and Páez, 2002). This phenology was picked up stronger by the
Landsat metrics than the Sentinel-1 metrics, because more Landsat
observations per pixel were available than from Sentinel-1. Many ob-
servations are important to describe phenology well (Baumann et al.,
2017c; Massey et al., 2017). Second, SAR data are generally better
suited than optical data for detecting scattered vegetation such as
shrubs (Ryan et al., 2012) and our results confirm this. However, our
analyses also show that multi-sensoral approaches are also more prone
to artefacts stemming from uneven image availability, particularly in
case of Sentinel-1. As especially SAR image availability increases, these
issues and artefacts may become less pronounced, but will likely con-
tinue to be a challenge when assessing very large areas. Categorical
approaches, such as classification approaches or binning the continuous
fields we derived, might be useful in such situation to lessen the in-
fluence of data acquisition artefacts.

Both measures had lowest uncertainties at high and low values and
higher uncertainties in the mid-range value domain, likely a con-
sequence of two factors. First, our training sample was slightly un-
balanced towards lower tree and shrub cover, and these samples po-
tentially had a stronger weight during the parameterization phase. This
might also explain why our maps displayed higher uncertainty for areas
bordering other ecoregions characterized by high tree cover, such as the
Yungas, an area likely not well-represented in our (randomly drawn)
training and validation dataset. Second, higher uncertainty in the mid-
range domain may result from our tree and shrub definition, which

Fig. 5. Left: spatial clusters (high TC/High SC and low SC/low SC) and outliers (low TC/high SC and high TC/low SC) of tree and shrub cover based on a bivariate
LISA analysis. Right: overlay of TC and SC.
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describe a categorization of a continuum of size and structure of woody
vegetation, and particularly mid-sized trees may be harder to classify in
general, and likely most prevalent where canopies are neither closed
nor fully open. Despite remaining uncertainty though, we emphasize
the high model performances for both tree and shrub cover and the very
similar overall pattern across the different mapping products, providing
confidence that the respective layers are a reliable representation of
woody vegetation in the Chaco.

Comparing our tree and shrub components to environmental and
land-use variables revealed interesting insights into the status and
health of Chaco woodlands and savannas. Importantly, our maps
highlighted clear, and spatially widespread, effects of certain land-use
practices outside woodlands on remaining woody vegetation. For ex-
ample, cropping had a clear effect on lowering tree and shrub cover
closer to fields, likely an effect of pesticide application with airplanes
which also spray over surrounding woodlands (Burghardt, 2014), and
the use of fire to clear land which may pass over to surrounding forests,
comparable to the Amazon (Cochrane and Laurance, 2002). Likewise,
smallholders affect woody vegetation substantially surrounding their
ranches (i.e., puestos). Impact decreases as cattle cannot roam too far
due to water access that is provided at the puesto itself, and because
wood collection becomes harder with increasing distance (Gasparri
et al., 2010; Macchi and Grau, 2012), and our results reflect these
patterns well (Fig. 6). Moreover, our results suggest that infrastructure,
such as roads or railways, affects only tree cover, whereas shrub cover
remains largely unaffected. This reflects parts of the early land-use
history of the Chaco. Between the 1870s and the 1960s/70s, quebracho
trees were harvested for tannin extraction used during leather pro-
duction (quebracho colorado contains 31% of tannin). Only the largest
trees were extracted, and the harvest location was closely connected to

the development of the road and railway network (Stunnenberg and
Kleinpenning, 1993; Stunnenberg, 1993). As our results show, the
Chaco still carries these legacies, as quebrachos can take up to hundred
until re-grown to full size.

Interestingly, we found all land-use-related factors to shape the
structure and composition of dry forests and savannas in the Chaco
stronger than biophysical factors. For example, tree cover decreased
with increasing CMD, with exception at very high values, which likely
represent areas where trees reach the ground water and therefore are
less dependent on climatic moisture, likely resulting in the high tree
cover values in our map. However, compared to land-use related fac-
tors, this trend was substantially weaker, further highlighting the de-
gree of human pressure on the landscape and the urgency to take more
action in protecting the remaining forests, as human pressure seems to
be a stronger determinant of the forest structure compared to natural
constraints.

Our analyses resulted in high model performance, reliable maps,
and show highly plausible patterns of tree and shrub cover across the
vast Chaco region. Still, some sources of uncertainties and some lim-
itations require mentioning. First, we only used centrality spectral
metrics, but did not consider variance-based image metrics. Likewise,
we did not consider seasonally-tuned composites due to limited image
availability, particularly in the case of the Sentinel-1 data. While both
modifications would likely improve model fits even further, these var-
iance metrics and seasonal composites are more prone to outliers, and
including them will therefore come at the expense of artefacts in the
resulting woody vegetation maps. Second, the nature of our training
data collection caused that we omitted below-canopy vegetation, as on-
screen digitization only captures the top canopy layer. This may be the
reason for the comparatively lower performance of our SAR-based

Fig. 6. Average tree cover, shrub cover and overall woody vegetation in relation to (A) cation exchange capacity as a measure for soil quality; (B) Climatic Moisture
Deficit representing a climate indicator; (C) distance to croplands; (D) distance to puestos; (E) distance to roads; and (F) distance to railways. Values on the y-axis
represent the values for tree cover, shrub cover, and the sum of thereof.
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models. Forest inventory data may provide more insights here, but
currently do not exist for the study area as a whole. Third, our land-use
variables were only available for a smaller part of the study region, but
it is unlikely that for example unmapped puestos in the south of our
study region would reveal a different pattern.

Mapping the extent, structure, and condition of savannas and dry
forests is important as they are under strong human pressure. Making
use of a new generation of optical and SAR sensors enabled us to se-
parate continuous fields of tree and shrub cover across the entire Gran
Chaco. Such maps have a range of application. For instance, fractional
woody cover is considered an Essential Biodiversity Variable (EBV)
(Brummitt et al., 2017; Kissling et al., 2018; Proença et al., 2017). In-
deed, in a companion paper we show that biodiversity, in particular
bird communities, react strongly and differently along gradients of tree
and shrub cover, with clear thresholds of woody cover below which
bird communities collapse (Macchi et al., in review). Likewise, above-
ground biomass (AGB) in dry forests and savannas varies substantially
depending on the fractions of trees and shrubs (Conti et al., 2014;
Gasparri et al., 2008), and our approach and our woody cover layers are
therefore likely improvements for biomass estimates based on broad-
scale AGB interpolation. Moreover, the Chaco is a major deforestation
hotspot globally (Vallejos et al., 2015), but our analyses highlighted
that there are still larger patches of relatively intact forests. Many of
these are not inside protected areas and our map here can serve as a
first-order spatial template for identifying forests of particularly con-
servation concern (e.g., for safeguarding biodiversity or carbon stocks).
Finally, next to deforestation, forest degradation is a major threat to the
ecological integrity of the Chaco, and our analyses revealed clear as-
sociation and spatial patterns of certain land uses and woody cover
patterns. This opens up avenues for mapping the spatial footprint of
degradation, and considering the temporal depth of the Landsat image
archives, to reconstruct degradation trends back to the 1980s. More
broadly, our work highlights the value of the rich Landsat archive,
especially when supplemented by the growing Sentinel-1 record to go
beyond categorical approaches to characterize and map woody vege-
tation in the world's savannas and tropical dry forests.
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