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Little evidence of management change in
California’s forest offset program
Jared Stapp 1✉, Christoph Nolte 2, Matthew Potts 1, Matthias Baumann 3, Barbara K. Haya 4 &

Van Butsic 1

Carbon offsets are widely promoted as a strategy to lower the cost of emission reductions,

but recent findings suggest that offsets may not causally reduce emissions by the amount

claimed. In a compliance market, offsets increase net emissions if they do not reflect real

emission reductions beyond the baseline scenario. Few studies have examined the addi-

tionality of forest carbon offsets within California’s U.S. Forest Projects compliance offset

protocol, one of the largest forest offset programs in the world. Here we examine addi-

tionality in California’s offset protocol. Since 2012, most of California’s offset credits (84%)

have been awarded to improved forest management projects. Using a database of improved

forest management project characteristics, locations, and remotely sensed forest disturbance

data indicative of management activity, we find that projects have been primarily allocated to

forests with high carbon stocks (127% higher than regional averages) and low historical

disturbance (28% less disturbance than regional averages since 1985). A matching and panel

regression analysis failed to show additionality, as project creation did not significantly lower

disturbance rates 3 and 5 years after project implementation relative to similar non-project

lands. These results indicate that California’s forest offset protocol may contribute to an

increasingly large carbon debt.
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M itigating greenhouse gas (GHG) emissions and the risks
associated with climate change are among the most
pressing challenges society faces today1. Central to

reaching climate change-related targets is reducing the amount of
carbon dioxide (CO2; carbon, hereafter) in the atmosphere2,3, and
GHG emissions trading programs have become the policy of
choice for many governments4. Carbon offsetting has gained
popularity as a tool to reduce the cost of compliance with
voluntary and government-mandated emissions reduction targets
globally5. Concerns, however, have been raised about the effec-
tiveness of offsets5–11. Ideally, when carbon emissions are offset,
the offset project should mitigate or reduce emissions or remove
carbon from the atmosphere equal to the emissions being offset.
Where emission reductions are required by law (i.e., a compliance
market), if the amount of carbon mitigated, reduced, or removed
by an offset project is less than the amount that the offset entitles
its purchaser to emit, carbon offsetting can lead to higher overall
emissions, reduced incentives to develop lower-emissions tech-
nologies, and increased warming12,13. Therefore, the effectiveness
of offset policies hinges on the offset protocol’s ability to ensure
equivalence and additionality.

Improved forest management (IFM), which supports greater
sequestration and storage of carbon, can be an impactful and
cost-effective strategy to reduce atmospheric carbon concentra-
tion level2,14–16. For IFM offset projects to be additional, land
enrolled should be part of a harvest management plan or other-
wise not managed optimally for carbon sequestration; after pro-
ject establishment, harvest should be delayed, or the forest
managed in a way to sustain or increase carbon stocks. Failure to
develop protocols that ensure additionality in IFM projects can
lead to over-crediting and associated carbon debt12,13,17.

Under its cap-and-trade system, California began compliance
offset protocols in 2012. The California Air Resources Board
(ARB) issues offset credits worth one metric tonne of CO2-
equivalent emissions to registered projects in the United States
that reduce, mitigate, or sequester GHG. The California Code of
Regulations requires additionality by stating that to reduce
atmospheric carbon, GHG reductions through offsets must be
“real, additional, quantifiable, permanent, verifiable, and

enforceable”18. IFM projects are the backbone of the policy, with
85.5% of credits allocated by California’s cap-and-trade system
being awarded to US forest offset projects to date—nearly all of
which (98.6%) were awarded to IFM projects19. Haya10,20 esti-
mates that for the compliance period between 2021 and 2030,
offsets could represent more than 50% of the reductions attri-
butable to the cap-and-trade program. Despite these legal
requirements and the importance of IFM projects to California’s
climate goals, growing empirical evidence suggests that offsets in
this program are not accurately credited for baselines, addition-
ality, and leakage, leading to over-crediting, and non-additional
due to asymmetric information and adverse selection12,17,21–24.

Here we empirically examine the additionality of forest offset
projects at this early stage in the program by quantifying the
impacts of forest offset projects on forest disturbance associated
with carbon emissions. While the additionality of forest offset
projects is determined by emission reductions over the 100-year
project lifespan, and optimal management may require early
management decisions resulting in disturbance to facilitate
improved long-term forest management, we propose that addi-
tionality measured over the short term can serve as an early
indicator of policy effectiveness.

To do this, we focused on three main questions: (1) To what
extent do IFM projects exhibit characteristics—such as size,
location, ownership class, credits received, and baseline carbon
stocks—commonly associated with lower long-term disturbance?
(2) Do pre-project disturbance rates on IFM projects suggest that
enrolled forests were at a lower risk of harvest than non-enrolled
forests, even without credits? (3) After projects are established, is
forest disturbance reduced relative to comparable lands—that is,
do projects show clear signs of additionality?

We explore heterogeneity across geographies for each question
as timber patterns and disturbance risks vary by region. We
utilize Supersections, sub-state delineations based on similar
ecosystem types and equivalent to the EPA’s Ecoregions Level III
designations25–27. ARB uses Supersections to establish whether a
project’s baseline aboveground carbon stocking is above or below
the average in a similar region (Fig. 1)25,28. Here we use the same
direct comparison method—we calculate historical forest

Fig. 1 Location of offset projects included in analysis. a Yellow shading represents locations and boundaries of offset projects relative to blue shading,
which represents locations and boundaries of Supersections. b Progressively darker red shading represents greater numbers of offset projects located
within each Supersection. c Progressively darker red shading represents greater total area of land (hectares) offset within each Supersection.
d Progressively darker red shading represents higher mean baseline carbon stocking of total offset project land relative to its respective Supersection.
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disturbance rates within Supersection and project bounds and
compare them directly to one another to evaluate disturbance
rates on project lands. Because different landowner types may
have divergent management goals17, we also explore hetero-
geneity across landowner types by using a forest landowner
classification stratum developed by the US Forest Service to group
projects29,30 (see Supplementary Table 1 for a complete
description of each landowner type). Groups include corporate
timber interests, families, Native American Tribes, timber
investment management organizations (TIMO) and real estate
investment trusts (REIT), and an aggregate group labeled ‘other,’
which comprises primarily of non-governmental organizations
(NGOs) and land trusts.

We examine 136 IFM projects that have been developed in 31
states and 40 Supersections, for which we were able to obtain
spatial project boundaries, with a primary focus on 90 of those
projects, which have been issued ARB credits, located in 24 states
and 31 Supersections (see Supplementary Table 2 for a summary
of all 117 ARB-credited compliance IFM projects to date; see
Supplementary Table 3 for comparisons between credited and
non-credited projects included in this study across regions). The
basis of our analysis is our two unique datasets and the ability to
observe forest disturbance before and after project establishment.
To create the first dataset, we collected, combined, cleaned, and
harmonized disparate boundary files for IFM compliance pro-
jects, creating the most complete dataset possible of ARB com-
pliance IFM project boundaries31–33. To create the second
dataset, we used time series satellite data from the Landsat archive
and a well-established algorithm for detecting forest disturbance
(LandTrendr) to map forest disturbances caused by management
activity in all represented Supersections and projects between
1985 and 202034–37. Our dataset distinguishes natural dis-
turbances from harvests so that we can focus on the role of forest
management in offsets. We distinguish this difference by using
predictive modeling, omitting disturbances such as wildfires38,
considering spatial and temporal patterns indicative of forest
management, and extending the timeframe of commonly used
forest change datasets, providing sufficient temporal resolution to
understand harvest risk39. Together, these two datasets provide
sufficient temporal and spatial heterogeneity to apply statistical
matching and panel regression techniques to evaluate if the
projects show signs of additionality.

Results and discussion
Participating IFM forest offset projects. The 90 credited projects
included in this analysis were primarily located on forestlands
owned by three ownership types: ‘other,’ comprising mainly
NGOs (34.4% of projects), corporate (23.3% of projects), and
TIMO/REIT (18.9% of projects) (Table 1). While there were
fewer Tribal projects (15.6% of projects), they were substantially
larger than projects owned by other ownership classes: on aver-
age, they were 32,220 ha, compared to the next largest, TIMO/
REIT projects, with an average size of 24,230 ha; ‘other’ projects
with an average size of 16,454 ha; and corporate projects with an
average size of 11,297 ha. Projects on family forestlands were less
common—only 7.8% of projects—and smaller in size than other
project types, with an average size of 2092 ha.

While projects owned by corporate and ‘other’ interests were
most common, the highest percentage of credits in California’s
program has been allocated to Tribal projects (47.9% of all
credits) and TIMO/REIT projects (23.7% of credits) due in part to
their larger size. The projects included in this analysis have been
issued 140.8 million credits—76.8% of the total 183.3 million
credits that ARB has issued across all compliance IFM projects as
of 2020 (Supplementary Table 2)28.

On average, across ownership classes, projects were stocked at
carbon levels that were 127% of Common Practice values, which
is the average standing live carbon of forests within the project’s
Supersection and Assessment Area. Family-owned forestlands
had the highest average stocking level above Common Practice at
145%, followed by Tribal forestlands at 139.5%, corporate
forestlands at 128.9%, and ‘other’ forestlands at 123.2%, TIMO/
REIT projects had the lowest aboveground carbon stocking at
115.5% of Common Practice. The minimum stocking level above
Common Practice for TIMO/REIT, Tribal, and family projects
was 100%. Across corporate, Tribal, family, and ‘other’ projects,
eight reported carbon levels above 200% of Common Practice,
with the highest being 256.1%.

Comparing forest disturbance rates. Using our remotely sensed
dataset of forest management-related disturbances between 1985
and 2020, we calculated the total annual disturbed area and
disturbance rate over the time series for project areas and
Supersections. Results were further explored across landowner
types and at the coarsest EPA Ecoregion level (Level I) to explore
whether ownership type is associated with different baseline
disturbance rates (Fig. 2; Supplementary Table 3).

Rates of management-related disturbance were relatively low
throughout the United States. Overall, about 0.2% of forested
pixels in our dataset were disturbed annually, likely due to forest
harvest. Annual disturbance rates in projects were statistically
lower overall than in Supersections; on average, 0.16% of project
land was disturbed each year compared to 0.22% of Supersection
land. Not only were average disturbance rates across the 35-year
time series lower for project land compared to Supersection land,
but this pattern of lower disturbance on project land was also
observed for almost all individual years of the time series (Fig. 2).
Projects experienced less annual disturbance than Supersections
for 31 of the 35 years included in our analysis. There was,
however, heterogeneity within individual projects and their
respective Supersections. Using pairwise Wilcoxon rank-sum
tests to compare each project/respective Supersection pair, 71% of
projects (64 of 90) had lower annual rates of disturbance than
their respective Supersection, 21% of which (19 of 90 projects)
had significantly lower annual rates of disturbance than their
Supersection (p < 0.001). 12% of projects (11 of 90) had
significantly higher rates (p < 0.001).

Comparing mean annual disturbance rates by ownership class
for all Supersections and all projects in the analysis, disturbance
rates were significantly higher in Supersections than projects
(p < 0.001) on TIMO/REIT, corporate, and family-owned forest-
lands. TIMO/REIT-owned forestlands had the largest discrepancy
in annual disturbance rate between Supersections (0.43%) and
projects (0.17%). There was also a large difference in annual
disturbance rates for corporate-owned forestlands between
Supersections (0.35%) and projects (0.14%). Tribal lands
experienced the lowest annual rates of disturbance for both
projects and Supersections, with the project rate (0.17%) higher
than the Supersection rate (0.1%; p < 0.001). No significant
difference was found between ‘other’ projects and their respective
Supersections.

Disturbance after project establishment. To estimate the impact
of project establishment on disturbance rates, we used pre-
regression matching and linear probability models. We utilized
matching to create a dataset comprising comparable control and
treatment observations to minimize selection bias due to the non-
random locations and characteristics of projects40,41. We matched
points created from individual project and non-project forest
pixels within Supersections (Supplementary Fig. 2,
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Supplementary Table 5), then combined all data from the
Supersections. We used this dataset in a difference-in-differences
regression framework and modeled our results for (1) three years
before and after project designation and (2) five years before and
after project designation. We specified two models: a fixed effects
linear probability model and a random effects logit model
(Table 2; Supplementary Tables 6–9). Standard errors were

clustered at the Supersection level (see Methods for further
details).

In this statistical framework, we seek to identify the impact of
the policy based on differences in trends between project and
non-project areas before and after treatment. The key identifying
assumption of the model is that overall trends in forest
disturbance mirror each other in project and Supersection areas

Table 1 Project size, credits, and baseline percent of Common Practice by ownership type for ARB-credited IFM projects included
in the study (n= 90).

Owner Class All Corporate TIMO/REIT Tribal Family Other

Number of projects 90 21 17 14 7 31
Percent of total projects 100% 23.3% 18.9% 15.6% 7.8% 34.4%
Hectares Mean 18,055 11,297 24,230 32,220 2092 16,454

Min 216 890 909 263 622 216
Max 204,110 46,559 113,651 204,110 5009 183,415
Sum 1,624,919 237,235 411,902 451,077 14,645 510,061
Percent of total project
hectares

100% 14.6% 25.3% 27.8% 0.9% 31.4%

Credits Mean 1,564,321 710,158 1,960,166 4,812,063 508,416 697,579
Min 777 4343 52,124 362,722 137,902 777
Max 16,085,960 2,098,896 6,249,083 16,085,960 1,182,019 3,586,399
Sum 140,788,878 14,913,326 33,322,816 67,368,886 3,558,911 21,624,939
Percent of total 100% 10.6% 23.7% 47.9% 2.5% 15.4%

Baseline percent of Common
Practicea

Mean 127% 128.9% 115.5% 139.5% 145% 123.2%
Mean weighted by credits 130% 136.6% 112.6% 143.7% 127.8% 113.4%
Mean weighted by hectares 113% 113% 112% 120.7% 119.2% 108%
Min 63.1% 64.8% 100% 100% 100% 63.1%
Max 256% 255.2% 163.2% 241.7% 256.1% 242.4%

aCommon Practice values from project listing documents.

Fig. 2 Time series showing the annual percentage of total area disturbed on projects and Supersections. Annual disturbance is reported between 1986
and 2020. Darker green dotted and solid lines represent annual disturbance on offset project land compared to lighter green dotted and solid lines
representing annual disturbance on Supersection land.

Table 2 Coefficients for the impact of projects on forest harvests from fixed effects linear probability model on the matched
dataset.

All Corporate TIMO/REIT Tribal Family Other

Three Year
Impact

0.000380 (0.000564) 0.000636 (0.000982) −0.00115* (0.000623) 0.000461 (0.000750) 0.00398 (0.00286) 0.00118** (0.000554)

Five Year
Impact

0.000278 (0.000543) 0.000251 (0.000643) −0.00101** (0.000376) 0.000932 (0.000928) 0.00156 (0.000501) 0.000772 (0.000501)

Standard error displayed in parentheses. p = p-value statistic for |z| (*p < 0.1; **p < 0.05; ***p < 0.01).
Coefficients can be interpreted as the percentage point change in the likelihood of forest harvest after establishing the offset project. Models are run for periods three and five years before and after
project establishment. Full regression coefficients are available in Supplementary Tables 6–9.
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before project enrollment. While it’s difficult to test statistically,
Fig. 2 supports the use of the difference-in-differences approach,
as trends in project and non-project areas are similar over time. A
strength of the difference-in-difference approach is that the
results are not biased by unobservable time-invariant confoun-
ders that might impact forest harvests such as land use history,
stable landcover preferences, and stable regional attitudes toward
forest harvesting. We note, however, that results may be biased if
time-variant unobservable variables are correlated with treatment
selection and forest disturbance, or if time-invariant variables
interact with time-varying ones. For example, these models would
be biased if a generational change took place in land ownership
shifted landowner attitudes as the land was enrolled as a project.
While we have seen little evidence that such shifts are happening
at the program scale, we cannot completely rule out such a
scenario. Likewise, standard errors in the model can be biased if
inter-project covariances differ between project and disturbance
pixels.

Our panel regression results fail to support the presence of
additionality at this early stage in California’s forest carbon offset
program. When data is pooled across land ownership types, we
do not find a statistically significant impact of project establish-
ment for either timeframe at normal levels of significance (Fig. 3).
Indeed, the only ownership class where we see a consistent
negative statistically significant impact of project establishment is
the TIMO/REIT class. As an ownership group, these projects
appear to be additional at this early stage. In addition, project
establishment is associated with increased forest harvest for
‘other’ projects.

Implications for climate change policy. California’s offset pro-
gram has enrolled IFM projects that have experienced low dis-
turbance rates over the past 35 years. As such, projects have much
higher levels of aboveground carbon stocking than their respec-
tive Supersection averages. If these carbon-rich forests were
threatened with harvest, they might be suitable choices for off-
setting. Our findings from the matching and panel regression
models, however, fail to find that that offsets were threatened by

forest harvest in the absence of the program, and are therefore
non-additional in the short term. Because California’s U.S. Forest
Projects offsets can be used for regulatory compliance, unless the
management of offsets changes in the future, the policy may be
creating a carbon debt and lead to increased carbon in the
atmosphere relative to the state’s cap-and-trade targets.

The incentive structure of the protocol is reflected in these
results, which issues credits by comparing a project’s baseline
against Common Practice values. Highly stocked forests are
issued large amounts of credits, and developers are paid
immediately for existing carbon stocks. Baseline setting in this
way rewards landowners for past decisions not to harvest.
However, these may be the very landowners and locations that
are also unlikely to harvest in the future. In this way, California’s
program fails to properly incentivize additionality and potentially
suffers from strong adverse selection. This is reflected in our
results, where we cannot statistically document decreases in forest
harvest patterns three and five years after project establishment
for the program by any landowner type except TIMO/REIT.

At this early stage in California’s program, we suggest
strengthening protocols to ensure additionality. This will require
the program to reconsider how it establishes baselines and
business-as-usual scenarios. Data on past forest harvests, both
inside and outside of project areas, can be used to provide
compelling and credible baselines and is available at sufficiently
high temporal and spatial resolutions for all areas covered by the
California program. We suggest the policy make better use of
these data sources to develop more credible baselines from which
to measure additionality.

While our results suggest limited additionality, and we believe
our findings are explained by the incentives provided by
California’s policy, we stress that this is an early assessment of a
program that requires forests to maintain carbon stocks for 100
years. Optimal carbon management over the project period may
require early management actions that result in forest disturbance
but lead to greater carbon over the course of the project, yet the
current protocol appears to create a disincentive for this type of
management32. There is a chance that the positive coefficients for
forest disturbance for ‘other’ forestlands identify early management

Fig. 3 Mean annual percentage of total area disturbed five years before and after project commencement. For each ownership class, rates for matched
data are compared between all projects and all Supersections five years before and after project commencement (lighter green and darker green,
respectively).
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that may lead to longer-term sequestration. Further research at the
level of individual project forest management plans will help clarify
if this is the case.

California has developed ambitious climate change-related
targets, policies, and programs, and the outcomes of these
decisions are likely to influence the development of offset
programs elsewhere. For this reason, California’s offset program
must serve the overall goal it was designed to aid in achieving.
Current incentives encourage the offsetting of carbon-rich forests
but do not sufficiently address additionality. We suggest that
strong reforms are needed for California’s offset program to be a
world-leading standard.

Methods
Overview of the california compliance offset program. The
California Compliance Offset Program began in 2012 to reach
target emissions reduction goals set by the 2008 AB 32 Scoping
Plan42. In this program, the California Air Resources Board
(ARB) calculates and allocates a specific number of offset credits
to qualifying projects that reduce or sequester GHG under ARB-
approved protocols. Offset credits are a “tradable compliance
instrument… that represent verified GHG reductions or removal
enhancements of one metric ton of [carbon dioxide equivalent]
CO2e” and are required to be “real, additional, quantifiable,
permanent, verifiable, and enforceable”28. To comply with man-
datory emission reductions, businesses are permitted to purchase
these offset credits to substitute a maximum of 8% of their
reductions from 2012–2020, 4% from 2021–2025, and 6% from
2026–2030.

ARB recognizes four different types of forestry offset projects:
land reforestation, avoided conversion, improved forest manage-
ment, and urban forestry. To register an IFM offset project,
landowners must have their land evaluated to assure that
improvements will occur, commit to the agreement for 100
years, and monitor and report project data throughout the
project’s lifetime. The number of offset credits awarded to an
individual project is determined by comparing overall carbon
stocking on project land to baseline carbon stocking in the
Supersection in which the project is located (the ‘Common
Practice’ statistic, estimated using data made available by the US
Forest Service Forest Inventory and Analysis (FIA) National
Program). Our research focuses only on IFM projects, which
make up 84% of all offset credits.

Offset boundaries, supersections, and landowners. IFM offset
projects were included in this analysis if they met three criteria:
(1) they were compliance projects and not Early Action (where
credits were awarded to entities reducing emissions before com-
pliance was required); (2) they were listed on an ARB-designated
registry; (3) their boundary GIS data was uploaded or otherwise
made available. ARB tasks much of the oversight of projects to
three registries: Verified Carbon Standard (now Verra California
Offset Project Registry, or VCSOPR), the Climate Action Reserve,
and the American Carbon Registry. When this data was collected,
many projects were listed across all three registries that did not
satisfy the requirement of boundary file upload. Once collected,
all files were converted to shapefiles and processed to equal-area
conic projection. Geometries were checked for validity, and
geometrical errors were repaired if present. The study area
included the boundaries for each project and the boundaries of
the 40 Supersections in which they were located. Supersections
are equivalent to the EPA’s sub-state Ecoregions Level III
designations25,28. For projects that intersected multiple Super-
sections, the primary and secondary Supersections, in terms of
the percentage of the project’s area contained, were included.

We stratified our analysis across five land ownership types:
corporate, TIMO/REIT, Tribal, family, and ‘other’ owners
(primarily land trusts and NGOs), all of whom may have
different management objectives. For example, corporate forest
owners typically have predictable forest management goals to
maximize profit from timber harvest. In contrast, non-industrial
private forest owners (Tribal, family, and ‘other’ owners) may be
motivated by alternative goals in addition to, or instead of,
financial gain, such as ecosystem services43. Forest owner types
and definitions for the US were sourced from the US Forest
Service29.

Identifying forest disturbance from 1985-2020 with remote
sensing. We created forest disturbance maps indicative of man-
agement activities such as clearcutting and selective harvest from
1985 to 2020. We conducted the analysis for each project and
Supersection using Google’s Earth Engine platform and the
LandTrendr algorithm36,37,44,45 (see Supplementary Fig. 1 for
remote sensing analysis and validation process diagram). Land-
Trendr (Landsat-based detection of trends in disturbance and
recovery) has been used in many forest change analyses and was
utilized in this work for several reasons. First, LandTrendr is an
effective tool for analyzing forest harvest-related disturbances
across diverse landscapes37. Second, it is optimized to detect
forest disturbance related to forest management activities like
harvesting, e.g., clearcutting, selective harvesting, and thinning, by
allowing parameter customization to identify specific types of
forest management36. Lastly, LandTrendr is effective at large-
scale analyses in Google’s Earth Engine platform, which provides
the computational power to conduct time series at the national
scale needed for this analysis37.

For each project and Supersection, the Landsat archive—US
Geological Survey (USGS) Surface Reflectance Tier 1 data34,35—
accessed via GEE, was used to create annual composite images for
each year between 1984 and 2020 inclusive. Data from 1984 was
ultimately omitted from analyses due to the non-uniform
availability of imagery. Imagery from all available Landsat sensors
was considered in creating the composites, including Landsat 5
Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper +
(ETM+ ), and Landsat 8 Operational Land Imager (OLI). The
archive was filtered for all images that overlapped the bounds of
the project or assessed Supersection. Images were then filtered to
those acquired within a peak growing season time range from mid-
June to mid-September between 1985 and 2020.

A harmonization function was deployed to prepare images in
the filtered collection for processing by correcting for discrepan-
cies across images acquired from different Landsat sensors46.
Clouds, cloud shadows, water, snow/ice, primary and secondary
roads, water bodies, and fire activity areas were masked out.

Annual medoid composites were made with the processed and
filtered image collection by selecting the images for each year with
spectral values most similar to the median spectral values of the
series37. Areas of forest with less than 30% canopy cover were
masked out from the composites with the following process: first,
a baseline forest cover image was generated using the Global
Forest Watch forest cover layer from 2000 as an initial reference
point39. The layer was filtered to include only areas with canopy
cover greater than or equal to 30%. A random sample of points
was generated within the forested areas, and then the points were
then used to sample the Landsat composite image we created for
the year 2000. A supervised random forest classification was
conducted to classify forest cover areas in the 1985 composite
image using the collected training data from 200047. Areas
classified in 1985 as non-forest or forest with less than 30%
canopy cover were masked out in every subsequent annual image
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of the time series. These steps were done for each project and
Supersection individually.

Annual composite images were clipped to project or Super-
section extents. The Normalized Burn Ratio (NBR) spectral
index48,49 was used as the input for LandTrendr, which has been
utilized in many studies using LandTrendr to detect forest
disturbance50,51 and is an exceptionally reliable metric compared
to other commonly used indices52. The LandTrendr algorithm
was applied, and the magnitude of change was calculated per
pixel. For each pixel time series, if there was more than one
disturbance detected, only the greatest magnitude disturbance
was ultimately considered. Finally, pixels were clustered into
minimum mapping units of 10 pixels using a 10-pixel sieve50,53 to
resolve noise ( < 10 disturbed pixels surrounded by non-
disturbance) and small, isolated areas of under-threshold
disturbance ( < 10 non-disturbed pixels surrounded by
disturbance).

Validation of landtrendr analysis. To validate the LandTrendr
analysis results, a stratified random sample of 3,114 points was
generated based on the area proportions of the disturbed/non-
disturbed map to manually confirm or reject each of the three
classes within both Supersection and project lands: (1) non-
forested areas; (2) forested areas that were not disturbed; and
(3) forest areas that were disturbed54. We then split this number of
validation points in half, sampling half from project land and half
from non-project Supersection land. Each point was also assigned
a five-year time period from 1985 to 2020. The classification was
manually confirmed or rejected using imagery from that five-year
period in Google Earth Pro. If imagery was not available, a new
random point was assigned with the same parameters55.

Each of the three validation classes ultimately had 1038 total
points sampled. 92% of points classified as non-forest were
manually confirmed as non-forest; 89% of points classified as
non-disturbed forest were manually confirmed as non-disturbed
forest, and 86% of points classified as disturbed forest were
manually confirmed as disturbed forest. To further validate our
results, the total area of pixels that experienced a disturbance in
the LandTrendr analysis was compared with the total disturbance
areas reported in the Global Forest Watch (GFW) dataset,
developed by Hansen et al.39. Several metrics were calculated and
compared because of the temporal and processing differences
between our study and GFW data. First, the total forest
disturbances detected in the LandTrendr outputs between 1986
and 2020 were calculated at the Supersection level. The same was
done for the GFW data for all available data at the time of writing,
2000–2020. Because we masked out certain types of disturbances
that could be present in the GFW dataset, such as wildfires, we
also applied the same masks to omit them from the GFW data
before summarizing it at the Supersection level. We calculated a
second metric for the LandTrendr output dataset that summar-
ized disturbances detected within the same period GFW data was
available. An important aspect of the LandTrendr model we used
was a parameter that returned only one disturbance event per
observation. For the second GFW summary, we masked out any
points that had experienced a disturbance before 2000 in the
LandTrendr output. This was done because we could be certain
that those areas would not experience a disturbance if only the
years 2000–2020 were isolated. On average, Supersections
experienced 2723 km2 and 1985 km2 of forest disturbance in
the second LandTrendr and GFW summaries, respectively
(Supplementary Table 4).

Comparing disturbance rates over time between projects and
supersections. To test the difference in forest disturbance rates

between projects and Supersections, we calculated disturbance
rates for overall project land and overall Supersection land. Dis-
turbance rates were calculated using a random sample of the full
dataset. We calculated the disturbance rate over time for a total of
35 time steps, starting with the rate of change from 1985 to 1986
and ending with the rate of change from 2019 to 2020. The
matching procedure was done using the full dataset and produced
5,997,312 data points split equally between project and non-
project Supersection points. The full unmatched dataset was then
randomly sampled to equal the sample size of the matched
dataset. Using this randomly sampled dataset, we then averaged
the disturbance rate for all projects and compared it to the
average disturbance rate for all Supersections. We performed
pairwise Wilcoxon tests as a non-parametric alternative to paired
t-tests to evaluate significant differences in disturbance rates
between projects and Supersections56.

Statistical signals of project commencement on forest dis-
turbance. To estimate the effect of project commencement on
forest disturbance, we combine matching methods with a
difference-in-difference panel regression. Past research has shown
that combining matching and difference-in-difference estimators
provides stronger estimates than matching alone40. In these
methods, matching is first used to build comparison treatment
and control datasets. Where Supersections cover vast areas, this
ensures that project points and non-project points have similar
harvest likelihoods. The points resulting from the matching
analysis were then used as input for the difference-in-differences
regression models. The use of difference-in-difference regression
then accounts for time-invariant unobservable variables that may
influence both treatment and outcome.

Approach. To match points between project land and non-
project Supersection land, we calculated and compiled several
variables known to be spatial determinants of forest harvesting,
including slope, aspect, elevation, distance to roads, distance to
mills, and landcover type57. The TIGER US Census Roads dataset
was used to calculate the distance to roads, and the US Wood-
Using Mill Locations dataset to calculate the distance to mills. We
used a nearest-neighbor matching method and a logistic regres-
sion method of measuring distance with the MatchIt package in
R58. A 0.2 caliper value and a random matching order were
used58. We matched points individually within Supersections and
then combined Supersection data to create the panel used in the
difference-in-differences model. The balance between matched
and non-matched observations was interrogated by comparing
the standardized mean difference between matched and unmat-
ched data (Supplementary Fig. 2; Supplementary Table 5).

We used a difference-in-differences panel model approach to
estimate the impact of offset project commencement on the
matched dataset. We chose difference-in-differences models
because they effectively isolate policy impacts from other
factors54,55. Specifically, we estimated the model:

Disturbanceit ¼ constant þ Projecti þ Afterit þ Projectit � Afterit
þ Slopei þ Elevationi þ Distroadsi þ Distmilli
þMaxTempit þMintempit þ Droughtit
þ Landcoverit þ pi þ eit

ð1Þ
here Disturbance is equal to one if a human-caused disturbance is
observed at point i in year t, and equal to zero otherwise. Projecti
identifies if a point is part of a project (1) or not (0). Afterit
indicates if azx time period is before (0) or after (1) project
commencement. The interaction term Projectit � Afterit , identifies
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observations that are both projects and in time periods after the
project has commenced versus observations that are either not
projects or projects before commencement. The other variables
refer to static and time-varying co-variants that impact forest
harvest. The error term can be segregated into a unit-specific
error term pi and an observation-specific error term eit :

We used two models to estimate this formula. First, we used a
fixed effects linear probability model with standard errors
clustered at the Supersection level. In this model, all time-
invariant variables in the regression equation fall out of the
estimator. Second, we used a random effects logit model with
standard errors clustered at the Supersection level. The two
models have trade-offs. The random effects model more
accurately reflects the dependent variable’s binomial nature,
while the linear probability model allows for the inclusion of fixed
effects40. In addition, while unobserved spatial-auto correlation
may decrease standard errors in the linear probability model, it
can actually bias coefficient estimates in the logit model. We
estimated the impact of the policy three years and five years pre-
and post-implementation to isolate policy effects. Both logit and
linear probability models were conducted in Stata using the
xtlogit and xtreg commands.

Model limitations. As with any statistical model, our model may
be biased if key identifying assumptions are not met. The concern
of most consequence in this work is the possibility of an unob-
servable covariate that varies with time and impacts forest dis-
turbance, as well as enrollment in California’s offset program.
While it is impossible to list all potential unobserved covariates,
we directly address four of the most important potential unob-
served variables and provide evidence for why we do not think
they are driving our results.

Variation in co-benefits of standing forests to landowners. If
landowners vary in their preferences for other co-benefits of
standing forests or in their ability to financially benefit from such
co-benefits (e.g., some locations might have stronger forest-
related tourism potential because of differences in geological/
natural features, or geographic access to existing tourism flows),
they could be more likely to enroll and less likely to harvest in the
absence of enrollment. In this scenario, our estimates could be
biased toward showing a greater impact. Given that we find a null
impact, our results suggest that even if this unobservable variable
existed, it would not qualitatively impact our main findings.

Family situation of landowners. Landowners’ family situations
may impact their need or preference for deriving income from
their land via credits, where those who need income may be less
likely to harvest and more likely to enroll in California’s offset
program. Because we include pre-treatment harvest levels, we
would only expect the family situation of the landowner to impact
our result if the landowner’s situation were to change at the same
time as the treatment (i.e., if it changes before the pre-treatment
period, it should be accounted for). While we cannot completely
rule this situation out, it is unlikely that such an effect is driving
the overall results here, given the relatively small amount of offset
land owned by families (0.9% of the total project hectares for the
90 credited projects included in this analysis, and 0.8% when all
117 credited projects to date are considered—see Supplementary
Table 2).

Maturity of forests and relationship to harvest probability.
There is no nationwide dataset on forest age at the scale of the
data used here. Older forest stocks are typically (although not
always) more valuable than younger ones and may be more likely

to be harvested. For example, if a forest has a typical harvest
rotation of 30 or 40 years, trees younger than this are less likely
to be harvested than trees older than this. If forestlands with
younger stocks are systematically enrolled in a project because
they cannot generate revenue through harvesting, and forest-
lands with older stocks systematically harvest more, our esti-
mates would be biased toward showing a greater impact of the
program. However, our estimates show a null effect of the
program for the program overall and for all but one ownership
class. This suggests that even if our results are biased by this
unobservable, the null effect estimated in the model will
still hold.

Maturity of forests and relationship to carbon payments. Older
forests typically contain more carbon than younger forests59. Given
that the California program pays landowners for carbon stocks
above Common Practice levels, there is an economic incentive to
enroll older forests in the program. Likewise, the incentive to
harvest also increases as forests mature. If there were a systematic
enrollment of older forests over younger forests in California’s
offset program, our model estimates would be biased downward as
the likelihood of forest harvest increases with age. In this case, a
time-variant unobservable would be biasing our model.

While we cannot completely rule this out, this is unlikely for
two reasons. First, the dataset used is based on forested areas in
1984 and remained forested until the pre-treatment period. Given
that the earliest projects enrolled in the program in 2012, the five-
year pre-treatment observation means the observations were
forested in 2007. This suggests that the youngest stands in our
dataset were at least 30 years old (23 years of observation
(1984–2007) plus roughly seven years to be classified as forest in
1984). This suggests that by the end of our sample, the youngest
forests were ~40 years of age. We believe that most forests in our
dataset were of age to be merchantable timber by the end of our
dataset. If this is the case, a landowner enrolling old forests in the
program faces an economic trade-off between enrolling for
credits or harvesting for revenue. Most economic models of
improved forest management suggest that break-even prices for
delaying harvest is over $50 and credits in the California market
have stayed below $20 a ton, so we suggest this outcome is
unlikely13,60–62.

Second, given that nearly all the forests in our sample are of
harvestable age, it is unclear if older stands are more or less likely
to be harvested. Relatively younger stands suggest a history of
past forest harvest, meaning that the property may be managed
for timber. If this is the case, the probability of harvest without
the program may be higher than for older forests with little to no
management history. If very old forests with very high carbon
stocks are not part of active management, and this management
continues, our results will be biased the other way, and the
takeaways from our model will stay the same. That is, selection
into very old forests may imply selection into non-managed
forests, where harvesting is unlikely.

Data availability
All data used in this study are publicly available online. Boundary files for IFM
compliance projects are available through the Verra California Offset Project Registry31

at https://registry.verra.org/, the Climate Action Reserve32 at https://thereserve2.apx.
com/myModule/rpt/myrpt.asp?r=111, and the American Carbon Registry33 at https://
acr2.apx.com/myModule/rpt/myrpt.asp?r=111. Data utilized to estimate the Common
Practice statistic comes from project listing documents, which are available on the three
registries’ websites as well. California Air Resources Board utilizes data from the USFS
FIA National Program to calculate Common Practice values, which is available at https://
apps.fs.usda.gov/DATIM/Default.aspx. Supersection26,27 shapefiles are available from the
ARB US Forest Projects website at https://ww3.arb.ca.gov/cc/capandtrade/protocols/
usforest/2015/ak.se.sc.Supersection.shp.5.4.15.zip (Alaska) and https://ww3.arb.ca.gov/
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cc/capandtrade/protocols/usforest/2015/super.section.shapefiles5.4.15.zip (continental
US). Datasets utilized to create maps of forest disturbance are available as follows: US
Geological Survey (USGS) Surface Reflectance Tier 1 data and Landsat Archive34,35 at
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access; European
Commission’s Joint Research Centre Global Surface Water Mapping Layers, v1.263 at
https://global-surface-water.appspot.com/download; MODIS Burned Area Monthly
Global 500 m38 at https://lpdaac.usgs.gov/products/mcd64a1v006/; and Global Forest
Watch39 forest cover layer at https://data.globalforestwatch.org/. Datasets used for
variable creation included the GRIDMET Drought: CONUS Drought Indices (PDSI)64 at
https://www.northwestknowledge.net/metdata/data/; US Wood-Using Mill Locations -
200565 at https://www.srs.fs.usda.gov/econ/data/mills/; and TIGER: US Census Roads66

at https://www.census.gov/programs-surveys/geography/guidance/tiger-data-products-
guide.html. Forest ownership in the conterminous United States29 is available through
the US Forest Service Research Data Archive at https://www.fs.usda.gov/rds/archive/
Catalog/RDS-2020-0044.

Code availability
The code developed for the processing and analysis of data and to generate figures and
tables in this analysis is available from the corresponding author upon reasonable
request.
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