Lattice Field Theory

Institut für Physik
Mathematisch-Naturwissen­schaft­liche Fakultät
Humboldt-Universität zu Berlin

Finite-volume effects to the HVP contribution to the muon g-2

The anomalous magnetic moment of the muon, $(g-2)_\mu$, has become a central focus in the broader particle physics community, due to significant tension between the best experimental [1][2] and theoretical determinations [3][4][5]. The $\sim 3$ to $4$ sigma discrepancy represents a real opportunity to discover new physics beyond the Standard Model (BSM), especially given the incredibly clean determinations on both the experimental and theoretical sides, together with the quadratic sensitivity to BSM effects, $(g-2)_\mu^{\text{BSM}} \sim (m_\mu / \Lambda_{\text{BSM}})^2$, where $m_\mu$ is the muon mass and $\Lambda_{\text{BSM}}$ the scale of the putative new physics.

Experiments are underway at both Fermilab [6][7][8][9] and JPARC [10][11], with an update expected some time this year, and at least a factor of 2 uncertainty reduction targeted in the coming years. The theory community is committed to maximizing the impact of this update, by providing a Standard Model determination of comparable overall uncertainty. The effort on this side is also very advanced and is summarized in detail in a forthcoming theory white paper [12].

On the theoretical side, the leading uncertainties in $a_\mu \equiv (g-2)_\mu/2$, arise from hadronic contributions, generated via the coupling of QCD fields to the muon-photon vertex. These break into three categories: the leading hadronic-vacuum-polarization (HVP) contribution, $a_{\text{HVP}}$, the leading hadronic-light-by-light and the sub-leading corrections to the HVP. Outstanding progress has been made in the determination of the latter two contributions such that these are well in line to reach the overall target uncertainty [13][14][15]. Since both the hadronic light-by-light and the sub-leading HVP are suppressed relative to the leading HVP, the targeted relative uncertainties here are $\sim 10%$ and, despite the complicated nature of these quantities, well within reach; see again ref. [12]. In this work we restrict attention to the $a_{\text{HVP}}$ contribution, for which sub-percent uncertainty is required to reach the overall $(g-2)_\mu$ precision target.

Numerical lattice QCD (LQCD) provides an ideal tool in the determination of $a_{\text{HVP}}$, and many leading collaborations have already presented very advanced calculations [16][17][18][19][20][21][22][23][24][25][26][14][27][28][29][30][31]. The observable can be directly extracted from a Euclidean electromagnetic-current two-point function and is thus well-suited to high-precision lattice determinations. To make progress in practice, a deep theoretical understanding of all uncertainties is crucial, with the dominant sources being discretization effects, scale-setting uncertainty, statistical uncertainty (especially for large separations of the vector currents as well as those arising from quark-disconnected diagrams) and, finally, uncertainties arising from the effects of working in a finite-volume spacetime.

Projects

Bibliography

[1]
G.W. Bennett, B. Bousquet, H.N. Brown, G. Bunce, R.M. Carey, P. Cushman, G.T. Danby, P.T. Debevec, M. Deile, H. Deng, et al.
Measurement of the negative muon anomalous magnetic moment to 0.7 ppm
Phys.Rev.Lett. 92 (2004) 161802
arXiv: hep-ex/0401008 [hep-ex]
[2]
G.W. Bennett, B. Bousquet, H.N. Brown, G. Bunce, R.M. Carey, P. Cushman, G.T. Danby, P.T. Debevec, M. Deile, H. Deng, et al.
Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL
Phys.Rev.D 73 (2006) 072003
arXiv: hep-ex/0602035 [hep-ex]
[3]
Fred Jegerlehner, Andreas Nyffeler
The Muon g-2
Phys.Rept. 477 (2009) 1
arXiv: 0902.3360 [hep-ph]
[4]
Fred Jegerlehner
Muon g – 2 theory: The hadronic part
EPJ Web Conf. 166 (2018) 00022
arXiv: 1705.00263 [hep-ph]
[5]
Michel Davier, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang
Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g-2$ and ${\alpha (m_Z^2)}$ using newest hadronic cross-section data
Eur.Phys.J.C 77 (2017) 827
arXiv: 1706.09436 [hep-ph]
[6]
R.M. Carey, K.R. Lynch, J.P. Miller, B.L. Roberts, W.M. Morse, Y.K. Semertzides, V.P. Druzhinin, B.I. Khazin, I.A. Koop, I. Logashenko, et al.
The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision
[7]
J. Grange, V. Guarino, P. Winter, K. Wood, H. Zhao, R.M. Carey, D. Gastler, E. Hazen, N. Kinnaird, J.P. Miller, et al.
Muon (g-2) Technical Design Report
arXiv: 1501.06858 [physics.ins-det]
[8]
David Flay
Precision Magnetic Field Calibration for the Muon $g-2$ Experiment at Fermilab
PoS ICHEP2016 (2017) 1075
[9]
Ran Hong
Experiences from the Commissioning and First Physics Run of the Fermilab Muon g-2 Experiment
arXiv: 1810.03729 [physics.ins-det]
[10]
K. Shimomura
Muonium in J-PARC; from fundamental to application
Hyperfine Interact. 233 (2015) 89
[11]
Yutaro Sato
Muon g-2/EDM experiment at J-PARC
PoS KMI2017 (2017) 006
[12]
T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C.M. Carloni Calame, M. Cè, G. Colangelo, et al.
The anomalous magnetic moment of the muon in the Standard Model
Phys.Rept. 887 (2020) 1
arXiv: 2006.04822 [hep-ph]
[13]
Thomas Blum, Norman Christ, Masashi Hayakawa, Taku Izubuchi, Luchang Jin, Chulwoo Jung, Christoph Lehner
Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass
Phys.Rev.Lett. 118 (2017) 022005
arXiv: 1610.04603 [hep-lat]
[14]
Davide Giusti, Vittorio Lubicz, Guido Martinelli, Francesco Sanfilippo, Silvano Simula, Cecilia Tarantino
HVP contribution of the light quarks to the muon $(g - 2)$ including isospin-breaking corrections with Twisted-Mass fermions
PoS LATTICE2018 (2018) 140
arXiv: 1810.05880 [hep-lat]
[15]
Nils Asmussen, Antoine Gerardin, Jeremy Green, Oleksii Gryniuk, Georg von Hippel, Harvey B. Meyer, Andreas Nyffeler, Vladimir Pascalutsa, Hartmut Wittig
Hadronic light-by-light scattering contribution to the muon g – 2 on the lattice
EPJ Web Conf. 179 (2018) 01017
arXiv: 1801.04238 [hep-lat]
[16]
T. Blum
Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment
Phys.Rev.Lett. 91 (2003) 052001
arXiv: hep-lat/0212018 [hep-lat]
[17]
Florian Burger, Xu Feng, Grit Hotzel, Karl Jansen, Marcus Petschlies, Dru B. Renner
Four-Flavour Leading-Order Hadronic Contribution To The Muon Anomalous Magnetic Moment
JHEP 02 (2014) 099
arXiv: 1308.4327 [hep-lat]
[18]
Bipasha Chakraborty, C.T.H. Davies, G.C. Donald, R.J. Dowdall, J. Koponen, G.P. Lepage, T. Teubner
Strange and charm quark contributions to the anomalous magnetic moment of the muon
Phys.Rev.D 89 (2014) 114501
arXiv: 1403.1778 [hep-lat]
[19]
Bipasha Chakraborty, C.T.H. Davies, J. Koponen, G.P. Lepage, M.J. Peardon, S.M. Ryan
Estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD
Phys.Rev.D 93 (2016) 074509
arXiv: 1512.03270 [hep-lat]
[20]
T. Blum, P.A. Boyle, T. Izubuchi, L. Jin, A. Jüttner, C. Lehner, K. Maltman, M. Marinkovic, A. Portelli, M. Spraggs
Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment
Phys.Rev.Lett. 116 (2016) 232002
arXiv: 1512.09054 [hep-lat]
[21]
Bipasha Chakraborty, C.T.H. Davies, P.G. de Oliviera, J. Koponen, G.P. Lepage, R.S. Van de Water
The hadronic vacuum polarization contribution to $a_{\mu}$ from full lattice QCD
Phys.Rev.D 96 (2017) 034516
arXiv: 1601.03071 [hep-lat]
[22]
T. Blum, P.A. Boyle, L. Del Debbio, R.J. Hudspith, T. Izubuchi, A. Jüttner, C. Lehner, R. Lewis, K. Maltman, M. Krstić Marinković, et al.
Lattice calculation of the leading strange quark-connected contribution to the muon $g − 2$
JHEP 04 (2016) 063 , JHEP 05 (2017) 034
arXiv: 1602.01767 [hep-lat]
[23]
M. Della Morte, A. Francis, V. Gülpers, G. Herdoíza, G. von Hippel, H. Horch, B. Jäger, H.B. Meyer, A. Nyffeler, H. Wittig
The hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD
JHEP 10 (2017) 020
arXiv: 1705.01775 [hep-lat]
[24]
D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, S. Simula
Strange and charm HVP contributions to the muon ($g - 2)$ including QED corrections with twisted-mass fermions
JHEP 10 (2017) 157
arXiv: 1707.03019 [hep-lat]
[25]
Sz. Borsanyi, Z. Fodor, C. Hoelbling, T. Kawanai, S. Krieg, L. Lellouch, R. Malak, K. Miura, K.K. Szabo, C. Torrero, et al.
Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles
Phys.Rev.Lett. 121 (2018) 022002
arXiv: 1711.04980 [hep-lat]
[26]
D. Giusti, F. Sanfilippo, S. Simula
Light-quark contribution to the leading hadronic vacuum polarization term of the muon $g-2$ from twisted-mass fermions
Phys.Rev.D 98 (2018) 114504
arXiv: 1808.00887 [hep-lat]
[27]
T. Blum, P.A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, J.T. Tsang
Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment
Phys.Rev.Lett. 121 (2018) 022003
arXiv: 1801.07224 [hep-lat]
[28]
C.T.H. Davies, C. DeTar, A.X. El-Khadra, E. Gámiz, Steven Gottlieb, D. Hatton, A.S. Kronfeld, J. Laiho, G.P. Lepage, Yuzhi Liu, et al.
Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD
Phys.Rev.D 101 (2020) 034512
arXiv: 1902.04223 [hep-lat]
[29]
Antoine Gérardin, Marco Cè, Georg von Hippel, Ben Hörz, Harvey B. Meyer, Daniel Mohler, Konstantin Ottnad, Jonas Wilhelm, Hartmut Wittig
The leading hadronic contribution to $(g-2)_\mu$ from lattice QCD with $N_{\rm f}=2+1$ flavours of O($a$) improved Wilson quarks
Phys.Rev.D 100 (2019) 014510
arXiv: 1904.03120 [hep-lat]
[30]
Sz. Borsanyi, Z. Fodor, J.N. Guenther, C. Hoelbling, S.D. Katz, L. Lellouch, T. Lippert, K. Miura, L. Parato, K.K. Szabo, et al.
Leading hadronic contribution to the muon magnetic moment from lattice QCD
Nature 593 (2021) 51
arXiv: 2002.12347 [hep-lat]
[31]
Vera Gülpers
Recent Developments of Muon g-2 from Lattice QCD
PoS LATTICE2019 (2020) 224
arXiv: 2001.11898 [hep-lat]
[32]
Maxwell T. Hansen, Agostino Patella
Finite-volume effects in $(g-2)^{\text{HVP,LO}}_\mu$
Phys.Rev.Lett. 123 (2019) 172001
arXiv: 1904.10010 [hep-lat]
[33]
Maxwell T. Hansen, Agostino Patella
Finite-volume and thermal effects in the leading-HVP contribution to muonic ($g − 2$)
JHEP 10 (2020) 029
arXiv: 2004.03935 [hep-lat]