1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
/**
 * @file InverseKinematicsMotionEngine.h
 *
 * @author <a href="mailto:xu@informatik.hu-berlin.de">Xu, Yuan</a>
 * @author <a href="mailto:mellmann@informatik.hu-berlin.de">Mellmann, Heinrich</a>
 * Implementation of class Inverse Kinematics Motion Engine
 */


#include "InverseKinematicsMotionEngine.h"
#include "Motion/MorphologyProcessor/ForwardKinematics.h"

using namespace InverseKinematic;
using namespace naoth;

InverseKinematicsMotionEngine::InverseKinematicsMotionEngine()
// :  rotationStabilizeFactor(0)
{
    getDebugParameterList().add(&params);
}

InverseKinematicsMotionEngine::~InverseKinematicsMotionEngine()
{
    getDebugParameterList().remove(&params);
}

Pose3D InverseKinematicsMotionEngine::getLeftFootFromKinematicChain(const KinematicChain& kc) const
{
  Pose3D p = kc.theLinks[KinematicChain::LFoot].M;
  p.translate(0, 0, -NaoInfo::FootHeight);
  return p;
}

Pose3D InverseKinematicsMotionEngine::getRightFootFromKinematicChain(const KinematicChain& kc) const
{
  Pose3D p = kc.theLinks[KinematicChain::RFoot].M;
  p.translate(0, 0, -NaoInfo::FootHeight);
  return p;
}


HipFeetPose InverseKinematicsMotionEngine::getHipFeetPoseFromKinematicChain(const KinematicChain& kc) const
{
  HipFeetPose p;
  p.hip = kc.theLinks[KinematicChain::Hip].M;
  p.feet.left = getLeftFootFromKinematicChain(kc);
  p.feet.right = getRightFootFromKinematicChain(kc);
  return p;
}

CoMFeetPose InverseKinematicsMotionEngine::getCoMFeetPoseFromKinematicChain(const KinematicChain& kc) const
{
  CoMFeetPose p;
  p.com.rotation = kc.theLinks[KinematicChain::Hip].R;
  p.com.translation = kc.CoM;
  p.feet.left = getLeftFootFromKinematicChain(kc);
  p.feet.right = getRightFootFromKinematicChain(kc);
  return p;
}



HipFeetPose InverseKinematicsMotionEngine::getHipFeetPoseBasedOnSensor() const
{
  return getHipFeetPoseFromKinematicChain(getKinematicChainSensor());
}

CoMFeetPose InverseKinematicsMotionEngine::getCoMFeetPoseBasedOnSensor() const
{
  return getCoMFeetPoseFromKinematicChain(getKinematicChainSensor());
}

HipFeetPose InverseKinematicsMotionEngine::getHipFeetPoseBasedOnModel() const
{
  return getHipFeetPoseFromKinematicChain(getKinematicChainMotor());
}

CoMFeetPose InverseKinematicsMotionEngine::getCoMFeetPoseBasedOnModel() const
{
  return getCoMFeetPoseFromKinematicChain(getKinematicChainMotor());
}

HipFeetPose InverseKinematicsMotionEngine::getCurrentHipFeetPose() const
{
  if (getSensorJointData().isLegStiffnessOn())
  {
    return getHipFeetPoseBasedOnModel();
  }

  return getHipFeetPoseBasedOnSensor();
}

CoMFeetPose InverseKinematicsMotionEngine::getCurrentCoMFeetPose() const
{
  // if was controlled in the last frame
  if(getFrameInfo().getFrameNumber() == lastCoMFeetControlFrameInfo.getFrameNumber() + 1)
  {
    return getlastControlledCoMFeetPose();
  }
  else if (getSensorJointData().isLegStiffnessOn())
  {
    return getCoMFeetPoseBasedOnModel();
  }

  return getCoMFeetPoseBasedOnSensor();
}

ZMPFeetPose InverseKinematicsMotionEngine::getPlannedZMPFeetPose() const
{
  // TODO: calculate ZMP according to sensor, return CoM as ZMP at the moment
  ZMPFeetPose result;
  CoMFeetPose com = getCurrentCoMFeetPose();
  result.zmp = com.com;
  result.feet = com.feet;

  /*if ( thePreviewController.ready() )
  {
    result.zmp.translation = thePreviewController.back();
  }*/
  
  return result;
}

HipFeetPose InverseKinematicsMotionEngine::controlCenterOfMass(
  const MotorJointData& theMotorJointData,
  const CoMFeetPose& p,
  bool& sloved, 
  bool fix_height)
{
  // save in case another motion wants to know it
  lastCoMFeetControlPose = p;
  lastCoMFeetControlFrameInfo = getFrameInfo();

  // copy initial values
  HipFeetPose result;
  result.feet = p.feet;
  result.hip = p.com;
  result.localInHip();
  

  /* normally it should not affect the algorithm,
   * but when IK can not be solved, it affects the result, i.e., support foot is prefered.
   */
  bool leftFootSupport = (result.feet.left.translation.z < result.feet.right.translation.z);

  // requested com in the coordinates of the support foot
  Vector3d refCoM;
  // support foot
  Kinematics::Link* obsFoot;

  // transform all data in support foot local coordiantes
  if ( leftFootSupport )
  {
    obsFoot = &(theInverseKinematics.theKinematicChain.theLinks[KinematicChain::LFoot]);
    refCoM = p.feet.left.invert() * p.com.translation;
  }
  else
  {
    obsFoot = &(theInverseKinematics.theKinematicChain.theLinks[KinematicChain::RFoot]);
    refCoM = p.feet.right.invert() * p.com.translation;
  }

  // set the supporting foot as the origin
  obsFoot->R = RotationMatrix();
  obsFoot->p = Vector3d(0, 0, NaoInfo::FootHeight);
  
  // reuse results from last calculation for the starting value
  result.hip.translation = theCoMControlResult;
  //result.hip.translation.z -= 35;

  // copy the requested values for the head and arm joints
  const double *sj = theMotorJointData.position;
  double *j = theInverseKinematics.theJointData.position;
  for (int i = 0; i <= JointData::numOfJoint; i++)
  {
    j[i] = sj[i];
  }

  double bestError = std::numeric_limits<double>::max();
  int i = 0; // iteration
  double max_iter = 15; // max number of iretations
  double max_error = 1e-3; //1e-8; // threshold

  // step control parameter
  double step = 1;
  double alpha = 0.5;
  double max_step = 2;
  
  for (; i < max_iter; i++)
  {
    // calculate the joints fulfilling the result
    solveHipFeetIK(result);

    // calculate the kinematic chain and the com
    Kinematics::ForwardKinematics::updateKinematicChainFrom(obsFoot);
    theInverseKinematics.theKinematicChain.updateCoM();

    // calculate error
    const Vector3d& obsCoM = theInverseKinematics.theKinematicChain.CoM;
    Vector3d e = refCoM - obsCoM;
    double error = e.x * e.x + e.y * e.y + e.z * e.z*(!fix_height);

    // adjust step size
    if (bestError < error)
    {
      // the error becoms bigger, reset
      result.hip.translation = theCoMControlResult;
      step *= alpha; // make smaller steps
    } else {
      bestError = error;
      theCoMControlResult = result.hip.translation;
      step *= (1.0 + alpha); // make bigger steps
    }
    step = Math::clamp(step, max_error, max_step);

    // convergence
    if (bestError < max_error /*&& i > 0*/)
    {
      assert(result.hip.translation.x == theCoMControlResult.x && 
             result.hip.translation.y == theCoMControlResult.y &&
             result.hip.translation.z == theCoMControlResult.z);
	    sloved = true;
      break;
    }

    // calculate the update
    Vector3d u = e * step;

    // clampt the update
    double maxAdjustment = 50;
    MODIFY("IK_COM_CTR_MAX", maxAdjustment);
    if (fabs(u.x) > maxAdjustment || fabs(u.y) > maxAdjustment) {
      sloved = false;
    } else {
      sloved = true;
    }
    u.x = Math::clamp(e.x * step, -maxAdjustment, maxAdjustment);
    u.y = Math::clamp(e.y * step, -maxAdjustment, maxAdjustment);
    u.z = Math::clamp(e.z * step, -maxAdjustment, maxAdjustment)*(!fix_height);

    result.hip.translation += u;
  }//end for
  
  // use the last best result
  result.hip.translation = theCoMControlResult;

  //std::cout << "steps " << i << std::endl;

  if(!sloved) {
    std::cerr<<"Warning: control com was not solved @ "<<bestError<<std::endl;
  }

  if ( bestError > 1 ) {
    std::cerr<<"Warning: can not control CoM @ "<<bestError<<std::endl;
  }

  if( i >= max_iter ) {
    std::cerr<<"Warning: maximum iterations reached @ "<<bestError<<std::endl;
  }
  
  return result;
}//end controlCenterOfMass


// TODO: check the parameter sloved
void InverseKinematicsMotionEngine::controlCenterOfMassCool(
  const MotorJointData& theMotorJointData,
  const CoMFeetPose& target,
  HipFeetPose& result,
  bool leftFootSupport,
  bool& sloved,
  bool fix_height)
{
  // save in case another motion wants to know it
  lastCoMFeetControlPose = target;
  lastCoMFeetControlFrameInfo = getFrameInfo();

  // requested com in the coordinates of the support foot
  Vector3d refCoM;
  KinematicChain::LinkID baseLink;
  if ( leftFootSupport ) {
    baseLink = KinematicChain::LFoot;
    refCoM = target.feet.left.invert() * target.com.translation;
  } else {
    baseLink = KinematicChain::RFoot;
    refCoM = target.feet.right.invert() * target.com.translation;
  }

  // set the supporting foot as the origin
  theInverseKinematics.theKinematicChain.getLink(baseLink).M = Pose3D(0, 0, NaoInfo::FootHeight);

  // copy the current motor joints as a stating configuration
  for (int i = 0; i < JointData::numOfJoint; i++) {
    theInverseKinematics.theJointData.position[i] = theMotorJointData.position[i];
  }

  // initialize the result with the requested com-feet pose
  /*
  HipFeetPose result;
  result.feet = target.feet;
  result.hip = target.com;
  result.localInHip();
  */
  
  //lastCoMControlResult = result.hip.translation;
  // reuse results from last calculation for the starting value
  //result.hip.translation = theCoMControlResult;// + (refCoM - lastCoMControlTarget);
  //lastCoMControlTarget = refCoM;

  double bestError = std::numeric_limits<double>::max();
  int i = 0; // iteration
  double max_iter = 15; // max number of iretations
  double max_error = 1e-8; // threshold

  // step control parameter
  double step = 1;
  double alpha = 0.5;
  double max_step = 1;
  Vector3d tmpResult = result.hip.translation;
  
  sloved = false;
  for (; i < max_iter; i++)
  {
    // calculate the joints fulfilling the result
    solveHipFeetIK(result);

    // calculate the kinematic chain and the com
    Kinematics::ForwardKinematics::updateKinematicChainFrom(theInverseKinematics.theKinematicChain, baseLink);
    theInverseKinematics.theKinematicChain.updateCoM();
    const Vector3d& obsCoM = theInverseKinematics.theKinematicChain.CoM;

    // calculate error
    Vector3d e = refCoM - obsCoM;
    double error = e.x * e.x + e.y * e.y + e.z * e.z*(!fix_height);

    // adjust step size
    if (bestError < error)
    {
      // the error becoms bigger, reset
      result.hip.translation = tmpResult;
      step *= alpha; // make smaller steps
    } else {
      bestError = error;
      tmpResult = result.hip.translation;
      step *= (1.0 + alpha); // make bigger steps
    }
    step = Math::clamp(step, max_error, max_step);

    // convergence
    if (bestError < max_error /*&& i > 0*/)
    {
      assert(result.hip.translation.x == tmpResult.x && 
             result.hip.translation.y == tmpResult.y &&
             result.hip.translation.z == tmpResult.z);
      sloved = true;
      break;
    }

    // calculate the update
    Vector3d u = e * step;

    // clampt the update
    double maxAdjustment = 50;
    MODIFY("IK_COM_CTR_MAX", maxAdjustment);

    u.x = Math::clamp(e.x * step, -maxAdjustment, maxAdjustment);
    u.y = Math::clamp(e.y * step, -maxAdjustment, maxAdjustment);
    u.z = Math::clamp(e.z * step, -maxAdjustment, maxAdjustment)*(!fix_height);

    result.hip.translation += u;
  }//end for
  
  // use the last best result
  result.hip.translation = tmpResult;

  if(!sloved) {
    std::cerr<<"Warning: control com was not solved @ "<<bestError<<std::endl;
  }

  if ( bestError > 1 ) {
    std::cerr<<"Warning: can not control CoM @ "<<bestError<<std::endl;
  }

  if( i >= max_iter ) {
    std::cerr<<"Warning: maximum iterations reached @ "<<bestError<<std::endl;
  }
  
  PLOT("NeoWalk:CalculatedCoM:x", theInverseKinematics.theKinematicChain.CoM.x);
  PLOT("NeoWalk:CalculatedCoM:y", theInverseKinematics.theKinematicChain.CoM.y);
  PLOT("NeoWalk:CalculatedCoM:z", theInverseKinematics.theKinematicChain.CoM.z);

  PLOT("NeoWalk:error", bestError);
  //std::cout << i << std::endl;

}//end controlCenterOfMassCool

bool InverseKinematicsMotionEngine::rotationStabilizeRC16(
  const Vector2d& inertial,
  const GyrometerData& theGyrometerData,
  const double timeDelta,
  const Vector2d&  rotationP,
  const Vector2d&  rotationVelocityP,
  const Vector2d&  /*rotationD*/,
  InverseKinematic::HipFeetPose& p)
{
  const double alpha = 0.2;
  Vector2d gyro = Vector2d(theGyrometerData.data.x, theGyrometerData.data.y);
  static Vector2d filteredGyro = gyro;
  filteredGyro = filteredGyro * (1.0f - alpha) + gyro * alpha;

  const double observerMeasurementDelay = 40;
  const int frameDelay = static_cast<int>(observerMeasurementDelay / (timeDelta*1000));

  static RingBuffer<Vector2d, 10> buffer;
  static Vector2d lastGyroError;
  static RotationMatrix lastBodyRotationMatrix = p.hip.rotation;

  const RotationMatrix relativeRotation = p.hip.rotation.invert() * lastBodyRotationMatrix;
  lastBodyRotationMatrix = p.hip.rotation;

  const double rotationY = atan2(relativeRotation.c[2].x, relativeRotation.c[2].z);
  buffer.add(Vector2d(relativeRotation.getXAngle(), rotationY));

  if(buffer.isFull() && frameDelay > 0 && frameDelay < buffer.size())
  {
    const Vector2d requestedVelocity = (buffer[frameDelay-1] - buffer[frameDelay]) / timeDelta;
    const Vector2d error = requestedVelocity - filteredGyro;
    //const Vector2d errorDerivative = (error - lastGyroError) / timeDelta;

    double correctionY = rotationVelocityP.y * error.y;
    //                     + rotationD.y * errorDerivative.y;

    double correctionX = rotationVelocityP.x * error.x;
    //                     + rotationD.x * errorDerivative.x;

    correctionX += rotationP.x * inertial.x;
    correctionY += rotationP.y * inertial.y;

    //p.localInHip();
    //p.hip.rotateX(correctionX);
    //p.hip.rotateY(correctionY);

    double height = NaoInfo::ThighLength + NaoInfo::TibiaLength + NaoInfo::FootHeight;
    p.hip.translate(0, 0, -height);
    p.hip.rotateX(correctionX);
    p.hip.rotateY(correctionY);
    p.hip.translate(0, 0, height);

    lastGyroError = error;
  }

  return true;
}

bool InverseKinematicsMotionEngine::rotationStabilize(
  const IMUData& theIMUModel,
  const GyrometerData& theGyrometerData,
  const double timeDelta,
  const Vector2d&  rotationP, 
  const Vector2d&  rotationVelocityP, 
  const Vector2d&  rotationD,
  InverseKinematic::HipFeetPose& p)
{
  const double alpha = 0.2;
  Vector2d gyro = Vector2d(theGyrometerData.data.x, theGyrometerData.data.y);
  static Vector2d filteredGyro = gyro;
  filteredGyro = filteredGyro * (1.0f - alpha) + gyro * alpha;

  const double observerMeasurementDelay = 40;
  const int frameDelay = static_cast<int>(observerMeasurementDelay / (timeDelta*1000));

  static RingBuffer<Vector2d, 10> buffer;
  static Vector2d lastGyroError;
  static RotationMatrix lastBodyRotationMatrix = p.hip.rotation;

  const RotationMatrix relativeRotation = p.hip.rotation.invert() * lastBodyRotationMatrix;
  lastBodyRotationMatrix = p.hip.rotation;

  const double rotationY = atan2(relativeRotation.c[2].x, relativeRotation.c[2].z);
  buffer.add(Vector2d(relativeRotation.getXAngle(), rotationY));

  if(buffer.isFull() && frameDelay > 0 && frameDelay < buffer.size())
  {
    const Vector2d requestedVelocity = (buffer[frameDelay-1] - buffer[frameDelay]) / timeDelta;
    const Vector2d error = requestedVelocity - filteredGyro;
    const Vector2d errorDerivative = (error - lastGyroError) / timeDelta;

    double correctionY = rotationVelocityP.y * error.y +
                         rotationD.y * errorDerivative.y;

    double correctionX =rotationVelocityP.x * error.x +
                        rotationD.x * errorDerivative.x;

    const Vector2d& inertial = theIMUModel.orientation;
    correctionX += rotationP.x * inertial.x;
    correctionY += rotationP.y * inertial.y;

    p.localInHip();
    p.hip.rotateX(correctionX);
    p.hip.rotateY(correctionY);

    lastGyroError = error;
  }

  return true;
}

/*
bool InverseKinematicsMotionEngine::rotationStabilize(
  const InertialModel& theInertialModel,
  const GyrometerData& theGyrometerData,
  Pose3D& hip)
{
  Vector2d r;
  r.x = hip.rotation.getXAngle();
  r.y = hip.rotation.getYAngle();

  PLOT("rotationStabilize:hip:x", Math::toDegrees(hip.rotation.getXAngle()));
  PLOT("rotationStabilize:hip:y", Math::toDegrees(hip.rotation.getYAngle()));

  const Vector2d& inertial = theInertialModel.orientation;
  const Vector3d& gyro = theGyrometerData.data;

  // HACK: small filter...
  static Vector3d lastGyro = gyro;
  Vector3d filteredGyro = (lastGyro+gyro)*0.5;

  PLOT("rotationStabilize:gyro:x", Math::toDegrees(lastGyro.x));
  PLOT("rotationStabilize:gyro:y", Math::toDegrees(lastGyro.y));

  Vector2<double> weight;
  weight.x = 
      getParameters().walk.stabilization.rotationP.x * inertial.x
    + getParameters().walk.stabilization.rotationD.x * filteredGyro.x;

  weight.y = 
      getParameters().walk.stabilization.rotationP.y * inertial.y
    + getParameters().walk.stabilization.rotationD.y * filteredGyro.y;

  double height = NaoInfo::ThighLength + NaoInfo::TibiaLength + NaoInfo::FootHeight;
      //theBlackBoard.theKinematicChain.theLinks[KinematicChain::Hip].p.z;
  hip.translate(0, 0, -height);
  hip.rotateX(weight.x);
  hip.rotateY(weight.y);
  hip.translate(0, 0, height);

  PLOT("rotationStabilize:stabilizer:x", Math::toDegrees(hip.rotation.getXAngle()));
  PLOT("rotationStabilize:stabilizer:y", Math::toDegrees(hip.rotation.getYAngle()));

  lastGyro = gyro;
  return true;
}//end rotationStabilize
*/

/*
bool InverseKinematicsMotionEngine::rotationStabilize(
  const RobotInfo& theRobotInfo,
  const GroundContactModel& theGroundContactModel,
  const naoth::InertialSensorData& theInertialSensorData,
  Pose3D& hip)
{
  // disable stablization slowly when no foot is on the ground
  const double switchingTime = 3000; // ms
  const double switchingRate = theRobotInfo.basicTimeStep / switchingTime;
  //if (theBlackBoard.theSupportPolygon.mode == SupportPolygon::NONE)
  if(!theGroundContactModel.leftGroundContact &&
     !theGroundContactModel.rightGroundContact) 
  {
    rotationStabilizeFactor -= switchingRate;
  } else {
    rotationStabilizeFactor += switchingRate;
  }

  rotationStabilizeFactor = Math::clamp(rotationStabilizeFactor, 0.0, 1.0);
  PLOT("rotationStabilizeFactor", rotationStabilizeFactor);

  Vector2d r;
  r.x = hip.rotation.getXAngle();
  r.y = hip.rotation.getYAngle();

  PLOT("rotationStabilize:hip:x", Math::toDegrees(hip.rotation.getXAngle()));
  PLOT("rotationStabilize:hip:y", Math::toDegrees(hip.rotation.getYAngle()));

  //const Vector2d& s = theBlackBoard.theInertialPercept.data;
  const Vector2d& s = theInertialSensorData.data;

  Vector2d e = r - s;

  bool isWorking = false;
  Vector2d chestRotationStabilizerValue;
  const double maxAngle = Math::fromDegrees(30);
  for( int i=0; i<2; i++ )
  {
    double threshold = Math::fromDegrees(getParameters().rotationStabilize.threshold[i]);
    if ( fabs(e[i]) > threshold )
    {
      chestRotationStabilizerValue[i] = (e[i] - Math::sgn(e[i]) * threshold) * getParameters().rotationStabilize.k[i];
      chestRotationStabilizerValue[i] = Math::clamp(chestRotationStabilizerValue[i], -maxAngle, maxAngle);
      //chestRotationStabilizerValue[i] *= rotationStabilizeFactor;
      isWorking = true;
    }
  }

  PLOT("isWorking", isWorking);
  if ( isWorking )
  {
    double height = NaoInfo::ThighLength + NaoInfo::TibiaLength + NaoInfo::FootHeight;
        //theBlackBoard.theKinematicChain.theLinks[KinematicChain::Hip].p.z;
    hip.translate(0, 0, -height);
    hip.rotateX(chestRotationStabilizerValue.x);
    hip.rotateY(chestRotationStabilizerValue.y);
    hip.translate(0, 0, height);
  }

  PLOT("rotationStabilize:stabilizer:x", Math::toDegrees(hip.rotation.getXAngle()));
  PLOT("rotationStabilize:stabilizer:y", Math::toDegrees(hip.rotation.getYAngle()));

  return isWorking;
}//end rotationStabilize
*/

void InverseKinematicsMotionEngine::solveHipFeetIK(const InverseKinematic::HipFeetPose& p)
{
  Pose3D chest = p.hip;
  chest.translate(0, 0, NaoInfo::HipOffsetZ);
  static const Vector3d footOffset(0,0,-NaoInfo::FootHeight);
  
  double err = theInverseKinematics.gotoLegs(chest, p.feet.left, p.feet.right, footOffset, footOffset);

  if (fabs(err) > Math::fromDegrees(1))
  {
    THROW("IK failed!");
  }
}//end solveHipFeetIK
  
void InverseKinematicsMotionEngine::copyLegJoints(double (&position)[naoth::JointData::numOfJoint]) const
{
  const double* l = theInverseKinematics.theJointData.position;
  for (int i = JointData::RHipYawPitch; i <= JointData::LAnkleRoll; i++)
  {
    position[i] = l[i];
  }
  // TODO: this is not enough, currently a solution of BH is used from InverseKinematicsBH.h
  // use mean value of two hips
  double hipYawPitch = (position[JointData::LHipYawPitch] + position[JointData::RHipYawPitch]) * 0.5;
  position[JointData::LHipYawPitch] = hipYawPitch;
  position[JointData::RHipYawPitch] = hipYawPitch;
}//end copyLegJoints


double InverseKinematicsMotionEngine::solveHandsIK(
  const Pose3D& chest,
  const Pose3D& leftHand,
  const Pose3D& rightHand,
  double (&position)[naoth::JointData::numOfJoint])
{
  // TODO: is it a good place for it?
  static const Vector3<double> lHandOffset(NaoInfo::LowerArmLength+NaoInfo::HandOffsetX,0,0);
  static const Vector3<double> rHandOffset(NaoInfo::LowerArmLength+NaoInfo::HandOffsetX,0,0);

  static const Kinematics::InverseKinematics::Mask lHandMask(Kinematics::InverseKinematics::MASK_POS);
  static const Kinematics::InverseKinematics::Mask rHandMask(Kinematics::InverseKinematics::MASK_POS);

  // STEP 1: transform the whole chain into torso (for symmetrie reasons)
  //         otherwise, there is a risk of getting a assymetric solution
  Kinematics::Link& torsoLink = theInverseKinematics.theKinematicChain.theLinks[KinematicChain::Torso];
  torsoLink.R = RotationMatrix();
  torsoLink.p = Vector3<double>(0, 0, 0);
  Kinematics::ForwardKinematics::updateKinematicChainFrom(&torsoLink);

  // STEP 2: solve the inverse kinematic for arms
  double error = theInverseKinematics.gotoArms(
    chest,
    leftHand,
    rightHand,
    lHandOffset,
    rHandOffset,
    lHandMask,
    rHandMask);

  // STEP 3: copy the calculated joint angles of the arms
  const JointData& jointData = theInverseKinematics.theJointData;
  for (int i = JointData::RShoulderRoll; i <= JointData::LElbowYaw; i++)
  {
    position[i] = jointData.position[i];
  }

  return error;
}//end solveHandsIK

void InverseKinematicsMotionEngine::armsOnBack(
  const RobotInfo& theRobotInfo,
  const HipFeetPose& /* pose */,
  double (&position)[JointData::numOfJoint])
{
  double target[JointData::LElbowYaw + 1];
  target[JointData::RShoulderRoll] = Math::fromDegrees(-90);
  target[JointData::LShoulderRoll] = Math::fromDegrees(90);
  target[JointData::RShoulderPitch] = Math::fromDegrees(119);
  target[JointData::LShoulderPitch] = Math::fromDegrees(119);
  target[JointData::RElbowRoll] = Math::fromDegrees(30);
  target[JointData::LElbowRoll] = Math::fromDegrees(-30);
  target[JointData::RElbowYaw] = Math::fromDegrees(-25);
  target[JointData::LElbowYaw] = Math::fromDegrees(25);

  // make sure the arms do not collide legs --------------
  double diffR = target[JointData::RShoulderPitch] - position[JointData::RShoulderPitch];
  double diffL = target[JointData::LShoulderPitch] - position[JointData::LShoulderPitch];

  if( (diffR + diffL) / 2 <= 0.02)
  {
    // limit the max speed -----------------------------
    double max_speed = Math::fromDegrees(getParameters().arm.maxSpeed) * theRobotInfo.getBasicTimeStepInSecond();
    for (int i = JointData::RElbowRoll; i <= JointData::LElbowYaw; i++)
    {
      double s = target[i] - position[i];
      s = Math::clamp(s, -max_speed, max_speed);
      position[i] += s;
    }
    diffR = target[JointData::RElbowRoll] - position[JointData::RElbowRoll];
    diffL = target[JointData::LElbowRoll] - position[JointData::LElbowRoll];
    if( (diffR + diffL) / 2 <= 0.02)
    {
      target[JointData::RShoulderRoll] = 0.0;
      target[JointData::LShoulderRoll] = 0.0;
      for (int i = JointData::RShoulderRoll; i <= JointData::LShoulderRoll; i++)
      {
        double s = target[i] - position[i];
        s = Math::clamp(s, -max_speed, max_speed);
        position[i] += s;
      }
    }
  }
  else
  {
    target[JointData::RElbowRoll] = 0.0;<--- Variable 'target[JointData::RElbowRoll]' is reassigned a value before the old one has been used.
    target[JointData::RElbowRoll] = 0.0;
    // limit the max speed -----------------------------
    double max_speed = Math::fromDegrees(getParameters().arm.maxSpeed) * theRobotInfo.getBasicTimeStepInSecond();
    for (int i = JointData::RShoulderRoll; i <= JointData::LElbowYaw; i++)
    {
      double s = target[i] - position[i];
      s = Math::clamp(s, -max_speed, max_speed);
      position[i] += s;
    }
  }
  //---------------------------------------------
}//end armsOnBack


// calculates the com of theKinematicChain in the coordinates of the link 
Vector3d InverseKinematicsMotionEngine::sensorCoMIn(
  const KinematicChainSensor& theKinematicChain,
  KinematicChain::LinkID link) const
{
  Pose3D foot = theKinematicChain.theLinks[link].M;
  foot.translate(0, 0, -NaoInfo::FootHeight);
  foot.rotation = RotationMatrix(); // assume the foot is flat on the ground
  return foot.invert() * theKinematicChain.CoM;
}

// compares expected com and com from sensors
// @return adjust applyed to hip
Vector3d InverseKinematicsMotionEngine::balanceCoM(
  const FrameInfo& theFrameInfo,
  const KinematicChainSensor& theKinematicChain,
  const Vector3d& lastReqCoM, 
  KinematicChain::LinkID link) const
{
  static unsigned int frameNumber = theFrameInfo.getFrameNumber();
  static Vector3<double> uP, uI, uD;
  if ( theFrameInfo.getFrameNumber() > frameNumber + 1)
  {
    // reset
    uP = Vector3d::zero;
    uI = Vector3d::zero;
    uD = Vector3d::zero;
  }

  ASSERT(link==KinematicChain::LFoot || link==KinematicChain::RFoot );
  Vector3d sensorCoM = sensorCoMIn(theKinematicChain, link);

  Vector3d e = lastReqCoM - sensorCoM;

  Vector3<double> u;
  for( int i=0; i<3; i++)
  {
    if (fabs(e[i]) > params.balanceCoM.threshold)
    {
      u[i] = e[i] - Math::sgn(e[i]) * params.balanceCoM.threshold;
    }
  }
  uI += u;
  uD = u - uP;
  uP = u;
  frameNumber = theFrameInfo.getFrameNumber();
  u = uP * params.balanceCoM.kP + uI * params.balanceCoM.kI + uD * params.balanceCoM.kD;
  for(int i=0; i<3; i++)
  {
    u[i] = Math::clamp(u[i], -30.0, 30.0);
  }
  return u;
}//end balanceCoM


void InverseKinematicsMotionEngine::armsBasedOnInertialModel(
        const IMUData &theIMUData,
        double (&position)[JointData::numOfJoint])
{
    // TODO: InertialSensorData may be better
    const IMUData& isd = theIMUData; //theInertialPercept
    double shoulderPitch = isd.orientation.y * getParameters().arm.inertialModelBasedMovement.shoulderPitchInterialSensorRate;
    double shoulderRoll  = isd.orientation.x * getParameters().arm.inertialModelBasedMovement.shoulderRollInterialSensorRate;
    position[JointData::RShoulderPitch] += shoulderPitch;
    position[JointData::LShoulderPitch] += shoulderPitch;
    position[JointData::RShoulderRoll]  += shoulderRoll;
    position[JointData::LShoulderRoll]  += shoulderRoll;
}

void InverseKinematicsMotionEngine::armsSynchronisedWithWalk(
        const RobotInfo& theRobotInfo,
        const InverseKinematic::CoMFeetPose& currentPose,
        JointData& jointData)
{
    InverseKinematic::CoMFeetPose localizedPose(currentPose);
    localizedPose.localInCoM();
    const Pose3D& lFoot = localizedPose.feet.left;
    const Pose3D& rFoot = localizedPose.feet.right;

    const double stepDeltaX = (lFoot.translation.x - rFoot.translation.x)*0.5;

    // calculate the movement for the arms
    const double targetRShoulderPitch = -(Math::fromDegrees(stepDeltaX) * getParameters().arm.synchronisedWithWalk.shoulderPitchRate);
    const double targetLShoulderPitch = +(Math::fromDegrees(stepDeltaX) * getParameters().arm.synchronisedWithWalk.shoulderPitchRate);
    
    // maximal amount the arms should move
    const double max_delta = Math::fromDegrees(getParameters().arm.maxSpeed) * theRobotInfo.getBasicTimeStepInSecond();
    
    // update the joints
    jointData.set(JointData::RShoulderPitch, Math::fromDegrees(90) + targetRShoulderPitch, max_delta);
    jointData.set(JointData::LShoulderPitch, Math::fromDegrees(90) + targetLShoulderPitch, max_delta);

    jointData.set(JointData::RShoulderRoll, Math::fromDegrees(-10), max_delta);
    jointData.set(JointData::LShoulderRoll, Math::fromDegrees(10), max_delta);

    jointData.set(JointData::RElbowYaw, Math::fromDegrees(0), max_delta);
    jointData.set(JointData::LElbowYaw, Math::fromDegrees(0), max_delta);

    jointData.set(JointData::RElbowRoll, Math::fromDegrees(0), max_delta);
    jointData.set(JointData::LElbowRoll, Math::fromDegrees(0), max_delta);

}//end gotoArms