1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#include "Spline.h"
using namespace tk;

// ---------------------------------------------------------------------
// implementation part, which could be separated into a cpp file
// ---------------------------------------------------------------------


// band_matrix implementation
// -------------------------

band_matrix::band_matrix(int dim, int n_u, int n_l)
{
    resize(dim, n_u, n_l);
}
void band_matrix::resize(int dim, int n_u, int n_l)
{
    assert(dim>0);
    assert(n_u>=0);
    assert(n_l>=0);
    m_upper.resize(n_u+1);
    m_lower.resize(n_l+1);
    for(size_t i=0; i<m_upper.size(); i++) {
        m_upper[i].resize(dim);
    }
    for(size_t i=0; i<m_lower.size(); i++) {
        m_lower[i].resize(dim);
    }
}
int band_matrix::dim() const
{
    if(m_upper.size()>0) {
        return static_cast<int>(m_upper[0].size());
    } else {
        return 0;
    }
}


// defines the new operator (), so that we can access the elements
// by A(i,j), index going from i=0,...,dim()-1
double & band_matrix::operator () (int i, int j)
{
    int k=j-i;       // what band is the entry
    assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
    assert( (-num_lower()<=k) && (k<=num_upper()) );
    // k=0 -> diogonal, k<0 lower left part, k>0 upper right part
    if(k>=0)   return m_upper[k][i];
    else	    return m_lower[-k][i];
}
double band_matrix::operator () (int i, int j) const
{
    int k=j-i;       // what band is the entry
    assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
    assert( (-num_lower()<=k) && (k<=num_upper()) );
    // k=0 -> diogonal, k<0 lower left part, k>0 upper right part
    if(k>=0)   return m_upper[k][i];
    else	    return m_lower[-k][i];
}
// second diag (used in LU decomposition), saved in m_lower
double band_matrix::saved_diag(int i) const
{
    assert( (i>=0) && (i<dim()) );
    return m_lower[0][i];
}
double & band_matrix::saved_diag(int i)
{
    assert( (i>=0) && (i<dim()) );
    return m_lower[0][i];
}

// LR-Decomposition of a band matrix
void band_matrix::lu_decompose()
{
    int  i_max,j_max;
    int  j_min;
    double x;

    // preconditioning
    // normalize column i so that a_ii=1
    for(int i=0; i<this->dim(); i++) {
        assert(this->operator()(i,i)!=0.0);
        this->saved_diag(i)=1.0/this->operator()(i,i);
        j_min=std::max(0,i-this->num_lower());
        j_max=std::min(this->dim()-1,i+this->num_upper());
        for(int j=j_min; j<=j_max; j++) {
            this->operator()(i,j) *= this->saved_diag(i);
        }
        this->operator()(i,i)=1.0;          // prevents rounding errors
    }

    // Gauss LR-Decomposition
    for(int k=0; k<this->dim(); k++) {
        i_max=std::min(this->dim()-1,k+this->num_lower());  // num_lower not a mistake!
        for(int i=k+1; i<=i_max; i++) {
            assert(this->operator()(k,k)!=0.0);
            x=-this->operator()(i,k)/this->operator()(k,k);
            this->operator()(i,k)=-x;                         // assembly part of L
            j_max=std::min(this->dim()-1,k+this->num_upper());
            for(int j=k+1; j<=j_max; j++) {
                // assembly part of R
                this->operator()(i,j)=this->operator()(i,j)+x*this->operator()(k,j);
            }
        }
    }
}
// solves Ly=b
std::vector<double> band_matrix::l_solve(const std::vector<double>& b) const
{
    assert( this->dim()==(int)b.size() );
    std::vector<double> x(this->dim());
    int j_start;
    double sum;
    for(int i=0; i<this->dim(); i++) {
        sum=0;
        j_start=std::max(0,i-this->num_lower());
        for(int j=j_start; j<i; j++) sum += this->operator()(i,j)*x[j];
        x[i]=(b[i]*this->saved_diag(i)) - sum;
    }
    return x;
}
// solves Rx=y
std::vector<double> band_matrix::r_solve(const std::vector<double>& b) const
{
    assert( this->dim()==(int)b.size() );
    std::vector<double> x(this->dim());
    int j_stop;
    double sum;
    for(int i=this->dim()-1; i>=0; i--) {
        sum=0;
        j_stop=std::min(this->dim()-1,i+this->num_upper());
        for(int j=i+1; j<=j_stop; j++) sum += this->operator()(i,j)*x[j];
        x[i]=( b[i] - sum ) / this->operator()(i,i);
    }
    return x;
}

std::vector<double> band_matrix::lu_solve(const std::vector<double>& b,
        bool is_lu_decomposed)
{
    assert( this->dim()==(int)b.size() );
    std::vector<double>  x,y;
    if(is_lu_decomposed==false) {
        this->lu_decompose();
    }
    y=this->l_solve(b);
    x=this->r_solve(y);
    return x;
}




// spline implementation
// -----------------------

void spline::set_boundary(spline::bd_type left, double left_value,
                          spline::bd_type right, double right_value,
                          bool force_linear_extrapolation)
{
    assert(m_x.size()==0);          // set_points() must not have happened yet
    m_left=left;
    m_right=right;
    m_left_value=left_value;
    m_right_value=right_value;
    m_force_linear_extrapolation=force_linear_extrapolation;
}


void spline::set_points(const std::vector<double>& x,
                        const std::vector<double>& y, bool cubic_spline)
{
    assert(x.size()==y.size());
    assert(x.size()>2);
    m_x=x;
    m_y=y;
    int   n = static_cast<int>(x.size());
    // TODO: maybe sort x and y, rather than returning an error
    for(int i=0; i<n-1; i++) {
        assert(m_x[i]<m_x[i+1]);
    }

    if(cubic_spline==true) { // cubic spline interpolation
        // setting up the matrix and right hand side of the equation system
        // for the parameters b[]
        band_matrix A(n,1,1);
        std::vector<double>  rhs(n);
        for(int i=1; i<n-1; i++) {
            A(i,i-1)=1.0/3.0*(x[i]-x[i-1]);
            A(i,i)=2.0/3.0*(x[i+1]-x[i-1]);
            A(i,i+1)=1.0/3.0*(x[i+1]-x[i]);
            rhs[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
        }
        // boundary conditions
        if(m_left == spline::second_deriv) {
            // 2*b[0] = f''
            A(0,0)=2.0;
            A(0,1)=0.0;
            rhs[0]=m_left_value;
        } else if(m_left == spline::first_deriv) {
            // c[0] = f', needs to be re-expressed in terms of b:
            // (2b[0]+b[1])(x[1]-x[0]) = 3 ((y[1]-y[0])/(x[1]-x[0]) - f')
            A(0,0)=2.0*(x[1]-x[0]);
            A(0,1)=1.0*(x[1]-x[0]);
            rhs[0]=3.0*((y[1]-y[0])/(x[1]-x[0])-m_left_value);
        } else {
            assert(false);
        }
        if(m_right == spline::second_deriv) {
            // 2*b[n-1] = f''
            A(n-1,n-1)=2.0;
            A(n-1,n-2)=0.0;
            rhs[n-1]=m_right_value;
        } else if(m_right == spline::first_deriv) {
            // c[n-1] = f', needs to be re-expressed in terms of b:
            // (b[n-2]+2b[n-1])(x[n-1]-x[n-2])
            // = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
            A(n-1,n-1)=2.0*(x[n-1]-x[n-2]);
            A(n-1,n-2)=1.0*(x[n-1]-x[n-2]);
            rhs[n-1]=3.0*(m_right_value-(y[n-1]-y[n-2])/(x[n-1]-x[n-2]));
        } else {
            assert(false);
        }

        // solve the equation system to obtain the parameters b[]
        m_b=A.lu_solve(rhs);

        // calculate parameters a[] and c[] based on b[]
        m_a.resize(n);
        m_c.resize(n);
        for(int i=0; i<n-1; i++) {
            m_a[i]=1.0/3.0*(m_b[i+1]-m_b[i])/(x[i+1]-x[i]);
            m_c[i]=(y[i+1]-y[i])/(x[i+1]-x[i])
                   - 1.0/3.0*(2.0*m_b[i]+m_b[i+1])*(x[i+1]-x[i]);
        }
    } else { // linear interpolation
        m_a.resize(n);
        m_b.resize(n);
        m_c.resize(n);
        for(int i=0; i<n-1; i++) {
            m_a[i]=0.0;
            m_b[i]=0.0;
            m_c[i]=(m_y[i+1]-m_y[i])/(m_x[i+1]-m_x[i]);
        }
    }

    // for left extrapolation coefficients
    m_b0 = (m_force_linear_extrapolation==false) ? m_b[0] : 0.0;
    m_c0 = m_c[0];

    // for the right extrapolation coefficients
    // f_{n-1}(x) = b*(x-x_{n-1})^2 + c*(x-x_{n-1}) + y_{n-1}
    double h=x[n-1]-x[n-2];
    // m_b[n-1] is determined by the boundary condition
    m_a[n-1]=0.0;
    m_c[n-1]=3.0*m_a[n-2]*h*h+2.0*m_b[n-2]*h+m_c[n-2];   // = f'_{n-2}(x_{n-1})
    if(m_force_linear_extrapolation==true)
        m_b[n-1]=0.0;
}

double spline::operator() (double x) const
{
    size_t n=m_x.size();
    // find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
    std::vector<double>::const_iterator it;
    it=std::lower_bound(m_x.begin(),m_x.end(),x);
    int idx=std::max( int(it-m_x.begin())-1, 0);

    double h=x-m_x[idx];
    double interpol;
    if(x<m_x[0]) {
        // extrapolation to the left
        interpol=(m_b0*h + m_c0)*h + m_y[0];
    } else if(x>m_x[n-1]) {
        // extrapolation to the right
        interpol=(m_b[n-1]*h + m_c[n-1])*h + m_y[n-1];
    } else {
        // interpolation
        interpol=((m_a[idx]*h + m_b[idx])*h + m_c[idx])*h + m_y[idx];
    }
    return interpol;
}

double spline::deriv(int order, double x) const
{
    assert(order>0);

    size_t n=m_x.size();
    // find the closest point m_x[idx] < x, idx=0 even if x<m_x[0]
    std::vector<double>::const_iterator it;
    it=std::lower_bound(m_x.begin(),m_x.end(),x);
    int idx=std::max( int(it-m_x.begin())-1, 0);

    double h=x-m_x[idx];
    double interpol;
    if(x<m_x[0]) {
        // extrapolation to the left
        switch(order) {
        case 1:
            interpol=2.0*m_b0*h + m_c0;
            break;
        case 2:
            interpol=2.0*m_b0*h;
            break;
        default:
            interpol=0.0;
            break;
        }
    } else if(x>m_x[n-1]) {
        // extrapolation to the right
        switch(order) {
        case 1:
            interpol=2.0*m_b[n-1]*h + m_c[n-1];
            break;
        case 2:
            interpol=2.0*m_b[n-1];
            break;
        default:
            interpol=0.0;
            break;
        }
    } else {
        // interpolation
        switch(order) {
        case 1:
            interpol=(3.0*m_a[idx]*h + 2.0*m_b[idx])*h + m_c[idx];
            break;
        case 2:
            interpol=6.0*m_a[idx]*h + 2.0*m_b[idx];
            break;
        case 3:
            interpol=6.0*m_a[idx];
            break;
        default:
            interpol=0.0;
            break;
        }
    }
    return interpol;
}