QCD+QED simulations
Last Modified: 1 March 2024Isospin is an approximate symmetry of Quantum Chromodynamics. Under an isospin transformation, the up and down quarks are rotated one into another. In reality this symmetry is broken by the fact that the up and down quark have different masses and electric charges. Isospin-breaking effects on hadronic observables are of order of 1%. Just to give an example, in an isospin-symmetric universe the proton and neutron would be completely indentical. Because of isospin-symmetric effects the proton is slightly lighter than the neutron.
Since isospin-breaking effects are generally small, traditionally lattice QCD simulations are performed in the isospin-symmetric limit. This approximation is no longer justified when observables are calculated with a subpercent precision, as in the case of leptonic and semileptonic decay rates of π and K mesons [1]. At this level of precision, the up and down mass difference and the coupling to QED can not be neglected.
In practice we simulate QCD+QED on a four-dimensional lattice at various values of the fine-structure constant α in such a way that physical observables can be interpolated at the physical value of α ≃ 1/137 [2]. The signature of this project is the use of C* (aka C-parity) boundary conditions [3][4][5][6] which allow for a local and gauge-invariant formulation of QED in finite volume and in the charged sector of the theory [7][8][9].
The generated configurations will be used to explore a variety of observables, primarily meson and baryon correlators and masses, leptonic and (in a more distant future) semileptonic decay rates of mesons, the hadronic contributions to the anomalous magnetic moment of the muon.
The open-source openQ*D-1.1 code [10] is used to generate gauge configurations and measure observables.
People
This work is done with the RC* collaboration, which includes researcher from several international institutions. The active members of the RC* collaboration are:
- David Albandea (IFIC, Universitat de València)
- Anian Altherr (ETH Zürich)
- Dr. Isabel Campos (Instituto de Física de Cantabria & IFCA-CSIC)
- Alessandro Cotellucci (Humboldt-Universität zu Berlin)
- Alessandro De Santis (Università di Roma Tor Vergata & INFN)
- Prof. Dr. Patrick Fritzsch (Trinity College Dublin)
- Dr. Tim Harris (ETH Zürich)
- Roman Gruber (ETH Zürich)
- Prof. Dr. Marina Krstić Marinković (ETH Zürich)
- Francesca Margari (Università di Roma Tor Vergata & INFN)
- Prof. Dr. Agostino Patella (Humboldt-Universität zu Berlin & IRIS Adlershof & DESY Zeuthen)
- Sara Rosso (Instituto de Física de Cantabria & IFCA-CSIC)
- Prof. Dr. Nazario Tantalo (Università di Roma Tor Vergata & INFN)
- Paola Tavella (ETH Zürich)
Computing grants and resources
- North-German Supercomputing Alliance (HLRN), Germany; projects bep00085, bep00102 and bep00116; machine: Lise; principal investigator: Agostino Patella.
- Poznan Supercomputing and Networking Center (PSNC), Poland; projects 450 and 466; machine: Eagle; principal investigator: Isabel Campos.
- Swiss National Supercomputing Centre (CSCS), Switzerland; projects go22 and go24 (ETHZ’s share); machine: Piz Daint; principal investigator: Marina Krstic Marinkovic.
- CINECA, Italy; LQCD123 INFN theoretical initiative’s share; machine: Marconi; subproject leader: Nazario Tantalo.
Documents and links
- Initial application for bep00085 project at HLRN here.
- Initial application for bep00102 project at HLRN here.
- Application for continuation of bep00102 project at HLRN here.
- Jens Lücke’s presentation at Lattice2021 here.
- Madelaine Dale’s presentation at Lattice2021 here.
- Alessandro Cotellucci’s poster at Lattice2022 here.
- Jens Lücke’s presentation at Lattice2022 here.
- Roman Gruber’s presentation at Lattice2022 here.
- Anian Altherr’s presentation at Lattice2022 here.
- Paola Tavella’s presentation at Lattice2022 here.
Bibliography
[1] |
S.
Aoki,
Y.
Aoki,
D.
Bečirević,
T.
Blum,
G.
Colangelo,
S.
Collins,
M.
Della Morte,
P.
Dimopoulos,
S.
Dürr,
H.
Fukaya,
et al.
FLAG Review 2019: Flavour Lattice Averaging Group (FLAG) Eur.Phys.J.C 80 (2020) 113 arXiv: 1902.08191 [hep-lat] |
---|---|
[2] |
Lucius
Bushnaq,
Isabel
Campos,
Marco
Catillo,
Alessandro
Cotellucci,
Madeleine
Dale,
Patrick
Fritzsch,
Jens
Lücke,
Marina
Krstić Marinković,
Agostino
Patella,
Nazario
Tantalo
First results on QCD+QED with C JHEP 03 (2023) 012 arXiv: 2209.13183 [hep-lat] |
[3] |
Andreas S.
Kronfeld,
U.J.
Wiese
SU(N) gauge theories with C periodic boundary conditions. 1. Topological structure Nucl.Phys.B 357 (1991) 521 |
[4] |
Andreas S.
Kronfeld,
U.J.
Wiese
SU(N) gauge theories with C periodic boundary conditions. 2. Small volume dynamics Nucl.Phys.B 401 (1993) 190 arXiv: hep-lat/9210008 [hep-lat] |
[5] |
U.J.
Wiese
C periodic and G periodic QCD at finite temperature Nucl.Phys.B 375 (1992) 45 |
[6] |
L.
Polley
Boundaries for SU(3)(C) x U(1)-el lattice gauge theory with a chemical potential Z.Phys.C 59 (1993) 105 |
[7] |
Biagio
Lucini,
Agostino
Patella,
Alberto
Ramos,
Nazario
Tantalo
Charged hadrons in local finite-volume QED+QCD with C JHEP 02 (2016) 076 arXiv: 1509.01636 [hep-th] |
[8] |
Agostino
Patella
QED Corrections to Hadronic Observables PoS LATTICE2016 (2017) 020 arXiv: 1702.03857 [hep-lat] |
[9] |
Martin
Hansen,
Biagio
Lucini,
Agostino
Patella,
Nazario
Tantalo
Gauge invariant determination of charged hadron masses JHEP 05 (2018) 146 arXiv: 1802.05474 [hep-lat] |
[10] |
Isabel
Campos,
Patrick
Fritzsch,
Martin
Hansen,
Marina Krstic
Marinkovic,
Agostino
Patella,
Alberto
Ramos,
Nazario
Tantalo
openQ*D code: a versatile tool for QCD+QED simulations Eur.Phys.J.C 80 (2020) 195 arXiv: 1908.11673 [hep-lat] |