Estimate map accuracy and area using stratified estimators
aa_stratified.Rd
Estimates map accuracy and area using stratified estimators. The function can deal with cases when the sampling strata are different to the map classes.
Value
A list of map accuracy and area proportion estimates and associated standard errors:
cm: adjusted confusion matrix in counts
cmp: adjusted confusion matrix in area proportion (sums to 1)
stats: User’s (ua) and Producer’s (pa) accuracy and the corresponding standard errors (se) for each class
accuracy: Overall accuracy and its standard error
area: estimated area proportion and standard errors for each class
References
Stehman, S. V., 2014. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923-4939. https://doi.org/10.1080/01431161.2014.930207
Examples
r <- c("A","A","A","A","A","C","B","A","B","C","A","B","B","B","B","B",
"A","A","B","B","C","C","C","C","C","D","D","B","B","A","D","D",
"D","D","D","D","D","C","C","B")
m <- c("A","A","A","A","A","A","A","B","B","B","A","B","B","B","B","B",
"B","B","B","B","B","B","C","C","C","C","C","C","B","B","D","D",
"D","D","D","D","D","D","D","D")
s <- c("1","1","1","1","1","1","1","1","1","1","2","2","2","2","2","2",
"2","2","2","2","3","3","3","3","3","3","3","3","3","3","4","4",
"4","4","4","4","4","4","4","4")
h <- c("1", "2", "3", "4")
N_h <- c(40000, 30000, 20000, 10000)
aa_stratified(s, r, m, h=h, N_h=N_h)
#> $cm
#> A B C D
#> A 9.2 1.6 1.6 0.0
#> B 4.8 10.8 3.2 0.0
#> C 0.0 0.8 2.4 1.6
#> D 0.0 0.4 0.8 2.8
#>
#> $cmp
#> A B C D
#> A 0.23 0.04 0.04 0.00
#> B 0.12 0.27 0.08 0.00
#> C 0.00 0.02 0.06 0.04
#> D 0.00 0.01 0.02 0.07
#>
#> $stats
#> class ua ua_se pa pa_se f1 f1_se
#> 1 A 0.7419355 0.1645627 0.6571429 0.1477318 0.6969697 0.11034620
#> 2 B 0.5744681 0.1248023 0.7941176 0.1165671 0.6666667 0.09354009
#> 3 C 0.5000000 0.2151657 0.3000000 0.1504438 0.3750000 0.13219833
#> 4 D 0.7000000 0.1527525 0.6363636 0.1623242 0.6666667 0.11284328
#>
#> $accuracy
#> [1] 0.63000000 0.08465617
#>
#> $fpc
#> [1] 1 1 1 1
#>
#> $area
#> class proportion proportion_se
#> 1 A 0.35 0.08225975
#> 2 B 0.34 0.07586538
#> 3 C 0.20 0.06429101
#> 4 D 0.11 0.03073181
#>