Table manipulation#

Pandas, short for Python Data Analysis Library, is a modern, powerful and feature rich library that is designed for doing data analysis in Python. Here, we will cover some basic Pandas that will allow you to store results in table format, do some basic table operations, visualization, and to read and write tables to files. You will find more information online in the Pandas Tutorials and in chapter 3 of the Python Data Science Handbook [VanderPlas, 2016].

import pandas as pd
pd.__version__
'2.1.1'

DataFrame#

The main pandas data structure is a table format called DataFrame. A DataFrame contains an Index and it contains columns. Columns are one-dimensional arrays of a single type called Series. A DataFrame can be created from a:

  • single Series object

  • list of dicts

  • dictionary of Series objects

  • two-dimensional NumPy array

  • NumPy structured array

mySeries = pd.Series(['London', 'Paris', 'Berlin'], name='City', dtype='string')
cities = pd.DataFrame({"City": mySeries, "Population": [8.8, 2.2, 3.6]})
cities
City Population
0 London 8.8
1 Paris 2.2
2 Berlin 3.6

DataFrames have the following attributes: dtypes, shape, index, columns, values, empty.

cities.columns
Index(['City', 'Population'], dtype='object')
cities.dtypes
City          string[python]
Population           float64
dtype: object
cities.shape
(3, 2)
cities.values
array([['London', 8.8],
       ['Paris', 2.2],
       ['Berlin', 3.6]], dtype=object)

Reading and writing#

The pandas library can read a variety of data formats using pandas.read_*(), including CSV, JSON, HTML, HDF5, Excel, SQL, SPSS, SAS, etc.:

fname = '../data/airquality.csv'
airq = pd.read_csv(fname, index_col=0)
airq.head()
Ozone Solar Wind Temp Month Day
ID
101 41.0 190.0 7.4 67 5 1
102 36.0 118.0 8.0 72 5 2
103 12.0 149.0 12.6 74 5 3
104 18.0 313.0 11.5 62 5 4
105 NaN NaN 14.3 56 5 5

The DataFrame object contains to_*() methods to write it to a file or database, e.g. airq.to_csv(out_filename).

Inspect DataFrame#

DataFrames have several methods that are useful for inspection: head(), tail(), and describe()

airq.describe()
Ozone Solar Wind Temp Month Day
count 116.000000 146.000000 153.000000 153.000000 153.000000 153.000000
mean 42.129310 185.931507 9.957516 77.882353 6.993464 15.803922
std 32.987885 90.058422 3.523001 9.465270 1.416522 8.864520
min 1.000000 7.000000 1.700000 56.000000 5.000000 1.000000
25% 18.000000 115.750000 7.400000 72.000000 6.000000 8.000000
50% 31.500000 205.000000 9.700000 79.000000 7.000000 16.000000
75% 63.250000 258.750000 11.500000 85.000000 8.000000 23.000000
max 168.000000 334.000000 20.700000 97.000000 9.000000 31.000000

Access values#

Select columns#

airq.Ozone
ID
101    41.0
102    36.0
103    12.0
104    18.0
105     NaN
       ... 
249    30.0
250     NaN
251    14.0
252    18.0
253    20.0
Name: Ozone, Length: 153, dtype: float64

…or using a name or a list of names.

airq["Ozone"].head()
ID
101    41.0
102    36.0
103    12.0
104    18.0
105     NaN
Name: Ozone, dtype: float64
airq[["Ozone", "Solar"]].head()
Ozone Solar
ID
101 41.0 190.0
102 36.0 118.0
103 12.0 149.0
104 18.0 313.0
105 NaN NaN

Select rows#

We can extract rows (called slicing) from a date frame using indexing similar to indexing lists and tuples, where the first index is being inclusive and the last exclusive.

airq[2:4]
Ozone Solar Wind Temp Month Day
ID
103 12.0 149.0 12.6 74 5 3
104 18.0 313.0 11.5 62 5 4

Rows and columns#

To extract rows and columns, we need to chain the commands pulling the columns and then the rows or vice versa (order does not matter).

airq[["Ozone", "Solar"]][2:4]
Ozone Solar
ID
103 12.0 149.0
104 18.0 313.0

Indexing#

  • The loc attribute allows indexing and slicing that always references the explicit index

  • The iloc attribute allows indexing and slicing that always references the implicit Python-style index

  • The ix attribute was a hybrid of the two. It is now depreciated.

Using the iloc indexer, we can index the underlying array as if it is a simple NumPy array (using the implicit Python-style index), but the DataFrame index and column labels are maintained in the result:

airq.iloc[1:3, 2:4]
Wind Temp
ID
102 8.0 72
103 12.6 74

Similarly, using the loc indexer we can index the underlying data in an array-like style but using the explicit row index and column indices:

airq.loc[100:102, ["Wind", "Temp"]]
Wind Temp
ID
101 7.4 67
102 8.0 72

Masking#

There are a couple extra indexing conventions that might seem at odds with the preceding discussion, but nevertheless can be very useful in practice. First, while indexing refers to columns, slicing refers to rows. We’ve already used numerical ranges for slices. Also, boolean masking operations work for selecting rows.

airq[(airq.Ozone > 15) & (airq.Ozone < 18)]
Ozone Solar Wind Temp Month Day
ID
112 16.0 256.0 9.7 69 5 12
182 16.0 7.0 6.9 74 7 21
195 16.0 77.0 7.4 82 8 3
243 16.0 201.0 8.0 82 9 20

Asign new column#

import numpy as np
airq["logOzone"]  = np.log(airq.Ozone)
airq.head()
Ozone Solar Wind Temp Month Day logOzone
ID
101 41.0 190.0 7.4 67 5 1 3.713572
102 36.0 118.0 8.0 72 5 2 3.583519
103 12.0 149.0 12.6 74 5 3 2.484907
104 18.0 313.0 11.5 62 5 4 2.890372
105 NaN NaN 14.3 56 5 5 NaN

Methods#

You can do masking and other useful things directly via methods of Series and DataFrames., e.g.

  • airq.Ozone.between(15, 18)

  • airq.Month.isin([5, 8])

  • airq.Month.astype(“string”)

airq.isna().sum()
Ozone       37
Solar        7
Wind         0
Temp         0
Month        0
Day          0
logOzone    37
dtype: int64

Simple aggregation functions include mean(), median(), min(), max(), and std().

airq['Ozone'].mean()
42.12931034482759

Grouping#

Sometimes we want to apply aggregation functions for individual factors separately.

airq.groupby('Month')
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x11645e300>

Sometimes we want to apply aggregation functions for individual factors separately.

airq.groupby('Month').mean()
Ozone Solar Wind Temp Day logOzone
Month
5 23.615385 181.296296 11.622581 65.548387 16.0 2.812076
6 29.444444 190.166667 10.266667 79.100000 15.5 3.236673
7 59.115385 216.483871 8.941935 83.903226 16.0 3.883834
8 59.961538 171.857143 8.793548 83.967742 16.0 3.845345
9 31.448276 167.433333 10.180000 76.900000 15.5 3.218795

Groupby comes with additional aggregation methods that provide more flexibility: aggregate(), filter(), transform(), and apply().

airq.groupby('Month').aggregate(["min", "max", "mean"])
Ozone Solar Wind Temp Day logOzone
min max mean min max mean min max mean min max mean min max mean min max mean
Month
5 1.0 115.0 23.615385 8.0 334.0 181.296296 5.7 20.1 11.622581 56 81 65.548387 1 31 16.0 0.000000 4.744932 2.812076
6 12.0 71.0 29.444444 31.0 332.0 190.166667 1.7 20.7 10.266667 65 93 79.100000 1 30 15.5 2.484907 4.262680 3.236673
7 7.0 135.0 59.115385 7.0 314.0 216.483871 4.1 14.9 8.941935 73 92 83.903226 1 31 16.0 1.945910 4.905275 3.883834
8 9.0 168.0 59.961538 24.0 273.0 171.857143 2.3 15.5 8.793548 72 97 83.967742 1 31 16.0 2.197225 5.123964 3.845345
9 7.0 96.0 31.448276 14.0 259.0 167.433333 2.8 16.6 10.180000 63 93 76.900000 1 30 15.5 1.945910 4.564348 3.218795

Append#

Append rows#

The stack two data.frames together by row, use the concat() function. Note append() will be depreciated in future versions of pandas.

pd.concat([airq.head(2), airq.tail(2)])
Ozone Solar Wind Temp Month Day logOzone
ID
101 41.0 190.0 7.4 67 5 1 3.713572
102 36.0 118.0 8.0 72 5 2 3.583519
252 18.0 131.0 8.0 76 9 29 2.890372
253 20.0 223.0 11.5 68 9 30 2.995732

Append columns#

The concat() function can also be used to stack columns of DataFrames together. The row index is preserved with an outer join by default.

pd.concat([airq.head(2), airq.tail(2)], axis=1)
Ozone Solar Wind Temp Month Day logOzone Ozone Solar Wind Temp Month Day logOzone
ID
101 41.0 190.0 7.4 67.0 5.0 1.0 3.713572 NaN NaN NaN NaN NaN NaN NaN
102 36.0 118.0 8.0 72.0 5.0 2.0 3.583519 NaN NaN NaN NaN NaN NaN NaN
252 NaN NaN NaN NaN NaN NaN NaN 18.0 131.0 8.0 76.0 9.0 29.0 2.890372
253 NaN NaN NaN NaN NaN NaN NaN 20.0 223.0 11.5 68.0 9.0 30.0 2.995732

To ignore row indices when stacking columns, you need to clear them prior to calling pd.concat().

df1 = airq.head(2).copy().reset_index(drop=True)
df2 = airq.tail(2).copy().reset_index(drop=True)
pd.concat([df1, df2], axis=1)
Ozone Solar Wind Temp Month Day logOzone Ozone Solar Wind Temp Month Day logOzone
0 41.0 190.0 7.4 67 5 1 3.713572 18.0 131.0 8.0 76 9 29 2.890372
1 36.0 118.0 8.0 72 5 2 3.583519 20.0 223.0 11.5 68 9 30 2.995732

Merge#

Pandas implements several ways of combining datasets via the pd.merge() function and the join()methods of Series and DataFrames.

The pd.merge() function implements one-to-one, many-to-one, and many-to-many joins.

The pd.merge() function joins based on column names and not the Index. The column names can be explicitly defined via the keywords on, left_on, and right_on.

Copy#

# Shallow copy
shallow_copy = airq

# Deep copy
deep_copy = airq.copy()

Visualization#

matplotlib#

%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(airq.Ozone, airq.Temp, 'or')
plt.show()
../../_images/5a15bfac30789211b0dffdc3180878a5ffe659c71e524e1d19716d252c296131.png

Pandas#

Pandas provides visualization tools built on top of matplotlib. Hence, you still need to import matplotlib’s pyplot. You can read more in the pandas reference guide here. There are two ways to use pandas for plotting:

By default plot() shows a line graph using the row indices a x-axis and the columns as data lines:

airq.Temp.plot()
plt.show()
../../_images/cb94c3d23478c21b3c3981a3672e1b08318a2111ee0308165fef2ca0c8ced971.png

You can create other plots using the methods DataFrame.plot.kind or provide the kind keyword argument to the plot() method:

airq.plot.scatter(x="Ozone", y="Temp", alpha=0.5)
plt.show()
../../_images/b11d5703ef6b3757bd9f72e06812b9e440cce323a9367dab8eefcebd7a8ea9d5.png